Math Problem Statement
La función de demanda para el fabricante de un producto es p= 969-56.9x al cuadrado donde es el precio por unidad cuando se demandan x unidades. Encuentre el ingreso máximo que obtendrá el fabricante. Introduzca únicamente su respuesta numérica usando hasta una cifra decimal redondeada.
Solution
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Revenue Maximization
Quadratic Functions
Differentiation
Formulas
Revenue function: I(x) = x * p(x) = 969x - 56.9x^3
First derivative for maximization: dI(x)/dx = 969 - 170.7x^2
Theorems
Optimization using the first derivative
Critical points from the first derivative test
Suitable Grade Level
Grades 11-12
Related Recommendation
Maximizing Revenue Using Demand Functions: Quadratic Revenue Function Analysis
Maximizing Revenue: Find the Maximum for R(x) = 392x - 0.9x^2
Maximizing Total Revenue: Finding Quantity from Demand Function
Maximize Revenue from Demand Equation x = -8p + 800
Maximizing Revenue with Demand Function p = -1/8 x + 50