Math Problem Statement

Use Lagrange multipliers to find the maximum and minimum values of f(x,y)=2x−5y subject to the constraint x2+3y2=111, if such values exist.

Solution

We are tasked with finding the maximum and minimum values of the function f(x,y)=2x5yf(x, y) = 2x - 5y subject to the constraint x2+3y2=111x^2 + 3y^2 = 111. To solve this problem, we will use the method of Lagrange multipliers.

Step 1: Set up the Lagrange multiplier equation

We introduce the Lagrange multiplier λ\lambda and define the Lagrangian function L(x,y,λ)\mathcal{L}(x, y, \lambda) as follows:

L(x,y,λ)=f(x,y)λg(x,y)\mathcal{L}(x, y, \lambda) = f(x, y) - \lambda \cdot g(x, y) where g(x,y)=x2+3y2111g(x, y) = x^2 + 3y^2 - 111 is the constraint.

Thus, the Lagrangian becomes:

L(x,y,λ)=(2x5y)λ(x2+3y2111)\mathcal{L}(x, y, \lambda) = (2x - 5y) - \lambda (x^2 + 3y^2 - 111)

Step 2: Find the partial derivatives

Now, we take the partial derivatives of L(x,y,λ)\mathcal{L}(x, y, \lambda) with respect to xx, yy, and λ\lambda and set them equal to zero:

  1. Lx=2λ2x=0\frac{\partial \mathcal{L}}{\partial x} = 2 - \lambda \cdot 2x = 0
  2. Ly=5λ6y=0\frac{\partial \mathcal{L}}{\partial y} = -5 - \lambda \cdot 6y = 0
  3. Lλ=(x2+3y2111)=0\frac{\partial \mathcal{L}}{\partial \lambda} = -(x^2 + 3y^2 - 111) = 0 (This is just the constraint equation.)

Step 3: Solve the system of equations

  1. From Lx=0\frac{\partial \mathcal{L}}{\partial x} = 0:

2=λ2xλ=1x2 = \lambda \cdot 2x \quad \Rightarrow \quad \lambda = \frac{1}{x}

  1. From Ly=0\frac{\partial \mathcal{L}}{\partial y} = 0:

5=λ6yλ=56y-5 = \lambda \cdot 6y \quad \Rightarrow \quad \lambda = \frac{-5}{6y}

Now we equate the two expressions for λ\lambda:

1x=56y6y=5xy=5x6\frac{1}{x} = \frac{-5}{6y} \quad \Rightarrow \quad 6y = -5x \quad \Rightarrow \quad y = \frac{-5x}{6}

Step 4: Substitute into the constraint equation

Substitute y=5x6y = \frac{-5x}{6} into the constraint x2+3y2=111x^2 + 3y^2 = 111:

x2+3(5x6)2=111x^2 + 3\left( \frac{-5x}{6} \right)^2 = 111

Simplifying:

x2+325x236=111x2+25x212=111x^2 + 3 \cdot \frac{25x^2}{36} = 111 \quad \Rightarrow \quad x^2 + \frac{25x^2}{12} = 111

Multiply through by 12 to eliminate the denominator:

12x2+25x2=133237x2=1332x2=133237=3612x^2 + 25x^2 = 1332 \quad \Rightarrow \quad 37x^2 = 1332 \quad \Rightarrow \quad x^2 = \frac{1332}{37} = 36

Thus, x=±6x = \pm 6.

Step 5: Find yy

Using y=5x6y = \frac{-5x}{6}, we find:

  • If x=6x = 6, then y=5(6)6=5y = \frac{-5(6)}{6} = -5.
  • If x=6x = -6, then y=5(6)6=5y = \frac{-5(-6)}{6} = 5.

Step 6: Compute the function values

Now, we evaluate f(x,y)=2x5yf(x, y) = 2x - 5y for the two points:

  • At (x,y)=(6,5)(x, y) = (6, -5): f(6,5)=2(6)5(5)=12+25=37f(6, -5) = 2(6) - 5(-5) = 12 + 25 = 37
  • At (x,y)=(6,5)(x, y) = (-6, 5): f(6,5)=2(6)5(5)=1225=37f(-6, 5) = 2(-6) - 5(5) = -12 - 25 = -37

Step 7: Conclusion

The maximum value of f(x,y)f(x, y) is 37, and the minimum value is -37.


Would you like more details or have any further questions?

Here are 5 related questions you might explore:

  1. How does the Lagrange multiplier method work in three dimensions?
  2. Can you solve optimization problems with inequality constraints using Lagrange multipliers?
  3. What happens when no maximum or minimum exists under certain constraints?
  4. How do Lagrange multipliers relate to the geometry of the constraint curve?
  5. How do we solve similar problems with multiple constraints?

Tip: Always check if the critical points satisfy the constraint equation before concluding your solution!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Lagrange Multipliers
Multivariable Calculus
Optimization

Formulas

f(x, y) = 2x - 5y
Constraint: x^2 + 3y^2 = 111
Lagrangian: 𝓛(x, y, λ) = f(x, y) - λ(x^2 + 3y^2 - 111)

Theorems

Method of Lagrange Multipliers

Suitable Grade Level

Undergraduate Calculus