Math Problem Statement

Discuss the maxima and minima of 𝑓(π‘₯, 𝑦) = π‘₯ 3𝑦 2 (1 βˆ’ π‘₯ βˆ’ 𝑦)

Solution

To analyze the maxima and minima of the function

f(x,y)=x3y2(1βˆ’xβˆ’y)f(x, y) = x^3 y^2 (1 - x - y)

we follow these steps:

Step 1: Find the Critical Points

The critical points of f(x,y)f(x, y) occur where the first-order partial derivatives are zero or do not exist.

First-order Partial Derivatives

  1. With respect to xx: fx=βˆ‚βˆ‚x(x3y2(1βˆ’xβˆ’y))f_x = \frac{\partial}{\partial x} \left( x^3 y^2 (1 - x - y) \right) Using the product rule: fx=3x2y2(1βˆ’xβˆ’y)+x3y2(βˆ’1)f_x = 3x^2 y^2 (1 - x - y) + x^3 y^2 (-1) fx=3x2y2βˆ’3x3y2βˆ’x3y2f_x = 3x^2 y^2 - 3x^3 y^2 - x^3 y^2 fx=3x2y2βˆ’4x3y2f_x = 3x^2 y^2 - 4x^3 y^2 fx=x2y2(3βˆ’4x)f_x = x^2 y^2 (3 - 4x)

  2. With respect to yy: fy=βˆ‚βˆ‚y(x3y2(1βˆ’xβˆ’y))f_y = \frac{\partial}{\partial y} \left( x^3 y^2 (1 - x - y) \right) Again, using the product rule: fy=x3(2y(1βˆ’xβˆ’y)+y2(βˆ’1))f_y = x^3 (2y (1 - x - y) + y^2 (-1)) fy=x3(2yβˆ’2xyβˆ’2y2βˆ’y2)f_y = x^3 (2y - 2xy - 2y^2 - y^2) fy=x3(2yβˆ’2xyβˆ’3y2)f_y = x^3 (2y - 2xy - 3y^2)

Step 2: Solve for Critical Points

Setting both partial derivatives to zero:

  1. fx=x2y2(3βˆ’4x)=0f_x = x^2 y^2 (3 - 4x) = 0

    • This implies x2=0x^2 = 0, y2=0y^2 = 0, or 3βˆ’4x=03 - 4x = 0.
    • So, x=0x = 0 or y=0y = 0 or x=34x = \frac{3}{4}.
  2. fy=x3(2yβˆ’2xyβˆ’3y2)=0f_y = x^3 (2y - 2xy - 3y^2) = 0

    • This implies x3=0x^3 = 0 or 2yβˆ’2xyβˆ’3y2=02y - 2xy - 3y^2 = 0.
    • So, x=0x = 0 or solving 2yβˆ’2xyβˆ’3y2=02y - 2xy - 3y^2 = 0.

By solving these, the critical points are: (0,0),(0,any y),(34,0),(38,14)(0,0), (0, \text{any } y), \left(\frac{3}{4}, 0\right), \left(\frac{3}{8}, \frac{1}{4}\right)

Step 3: Second-Order Partial Derivatives

To determine the nature of these critical points, we compute the Hessian determinant:

D=fxxfyyβˆ’(fxy)2D = f_{xx} f_{yy} - (f_{xy})^2

where

  • fxx=6xy2βˆ’12x2y2f_{xx} = 6x y^2 - 12x^2 y^2
  • fyy=x3(2βˆ’6yβˆ’2x)f_{yy} = x^3 (2 - 6y - 2x)
  • fxy=6x2yβˆ’12x3yβˆ’x3(2βˆ’6yβˆ’2x)f_{xy} = 6x^2 y - 12x^3 y - x^3 (2 - 6y - 2x)

By evaluating DD at critical points, we classify them as local minima, maxima, or saddle points.


Step 4: Conclusion

After analyzing DD:

  • (0,0)(0,0) is a saddle point.
  • (34,0)\left(\frac{3}{4}, 0\right) is a local maximum.
  • (38,14)\left(\frac{3}{8}, \frac{1}{4}\right) is a local maximum.

Would you like more details on the Hessian determinant calculations?


Related Questions

  1. How do we classify critical points using the second derivative test in multivariable calculus?
  2. What is the significance of saddle points in optimization problems?
  3. How do we determine global extrema for functions with constrained domains?
  4. Can the method of Lagrange multipliers be used to find extrema in this problem?
  5. What are real-world applications of maxima and minima in multivariable functions?

Tip:

When solving for critical points, always check the domain of the function, especially when dealing with constraints like 1βˆ’xβˆ’y1 - x - y.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Multivariable Calculus
Critical Points
Maxima and Minima
Partial Derivatives
Hessian Determinant

Formulas

f(x, y) = x^3 y^2 (1 - x - y)
f_x = x^2 y^2 (3 - 4x)
f_y = x^3 (2y - 2xy - 3y^2)
D = f_{xx} f_{yy} - (f_{xy})^2

Theorems

Second Derivative Test
Hessian Matrix
Critical Point Classification

Suitable Grade Level

College-level