Math Problem Statement

The given exercise asks for operations involving the matrices A, B, C, and D. I'll solve each part step-by-step.

Solution

The given exercise asks for operations involving the matrices AA, BB, CC, and DD. I'll solve each part step-by-step. The matrices provided are:

B = \begin{bmatrix} -2 & 0 \\ 3 & 1 \end{bmatrix}, \quad C = \begin{bmatrix} -1 & 2 \\ 2 & 4 \end{bmatrix}, \quad D = \begin{bmatrix} 2 \\ -1 \end{bmatrix}.$$ ### (a) $$A + B$$ Add corresponding elements of $$A$$ and $$B$$: $$A + B = \begin{bmatrix} 1 & 2 \\ 1 & -1 \end{bmatrix} + \begin{bmatrix} -2 & 0 \\ 3 & 1 \end{bmatrix} = \begin{bmatrix} -1 & 2 \\ 4 & 0 \end{bmatrix}.$$ ### (b) $$A \cdot C$$ Matrix multiplication of $$A$$ and $$C$$: $$A \cdot C = \begin{bmatrix} 1 & 2 \\ 1 & -1 \end{bmatrix} \cdot \begin{bmatrix} -1 & 2 \\ 2 & 4 \end{bmatrix}.$$ Perform the multiplication: $$A \cdot C = \begin{bmatrix} (1)(-1) + (2)(2) & (1)(2) + (2)(4) \\ (1)(-1) + (-1)(2) & (1)(2) + (-1)(4) \end{bmatrix} = \begin{bmatrix} 3 & 10 \\ -3 & -2 \end{bmatrix}.$$ ### (c) $$B \cdot C$$ Matrix multiplication of $$B$$ and $$C$$: $$B \cdot C = \begin{bmatrix} -2 & 0 \\ 3 & 1 \end{bmatrix} \cdot \begin{bmatrix} -1 & 2 \\ 2 & 4 \end{bmatrix}.$$ Perform the multiplication: $$B \cdot C = \begin{bmatrix} (-2)(-1) + (0)(2) & (-2)(2) + (0)(4) \\ (3)(-1) + (1)(2) & (3)(2) + (1)(4) \end{bmatrix} = \begin{bmatrix} 2 & -4 \\ -1 & 10 \end{bmatrix}.$$ ### (d) $$C \cdot D$$ Matrix multiplication of $$C$$ and $$D$$: $$C \cdot D = \begin{bmatrix} -1 & 2 \\ 2 & 4 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ -1 \end{bmatrix}.$$ Perform the multiplication: $$C \cdot D = \begin{bmatrix} (-1)(2) + (2)(-1) \\ (2)(2) + (4)(-1) \end{bmatrix} = \begin{bmatrix} -4 \\ 0 \end{bmatrix}.$$ ### (e) $$D \cdot A$$ Matrix multiplication of $$D$$ and $$A$$ (dimensions do not align for this multiplication). **Not possible**. ### (f) $$D \cdot B$$ Matrix multiplication of $$D$$ and $$B$$ (dimensions do not align for this multiplication). **Not possible**. ### (g) $$-A$$ Negate all elements of $$A$$: $$-A = \begin{bmatrix} -1 & -2 \\ -1 & 1 \end{bmatrix}.$$ ### (h) $$-D$$ Negate all elements of $$D$$: $$-D = \begin{bmatrix} -2 \\ 1 \end{bmatrix}.$$ Let me know if you need detailed explanations of these calculations, or further assistance! --- **Relative Questions:** 1. Can you calculate the determinant of $$A$$ or $$B$$? 2. How do you interpret the resulting matrices geometrically? 3. What are the eigenvalues and eigenvectors of $$C$$? 4. Can you verify if $$C$$ is invertible? 5. How would you interpret the product $$A \cdot C$$ in a real-world context? **Tip:** Always ensure matrix dimensions are compatible before performing multiplication.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Matrix Operations
Matrix Addition
Matrix Multiplication
Negation of Matrices

Formulas

Matrix Addition: A + B = [a11 + b11, a12 + b12; a21 + b21, a22 + b22]
Matrix Multiplication: A * B = [a11*b11 + a12*b21, a11*b12 + a12*b22; a21*b11 + a22*b21, a21*b12 + a22*b22]
Negation of Matrix: -A = [-a11, -a12; -a21, -a22]

Theorems

Properties of Matrix Addition
Matrix Multiplication Rules
Negation of Matrix Elements

Suitable Grade Level

Grades 10-12