Math Problem Statement

Perhatikan matriks berikut: A=[1 2], B=[[2 -3],[-1 5]], C=[[6 4 0],[8 2 -10]], D=[[3 5],[1 2],[0 -4]], E=[[1 2 1],[2 3 4],[1 2 3]]. Maka tentukan: 1. Hasil dari matriks C + DT adalah... 2. Hasil dari perkalian skalar 1/3 C adalah... 3. Hasil perkalian matriks AB adalah... 4. Nilai invers matriks B-1 adalah... 5. Determinan matriks E adalah...

Solution

Let's break down the problem based on the image. The matrices given are:

A=[12],B=[2315],C=[6408210]A = \begin{bmatrix} 1 & 2 \end{bmatrix}, \quad B = \begin{bmatrix} 2 & -3 \\ -1 & 5 \end{bmatrix}, \quad C = \begin{bmatrix} 6 & 4 & 0 \\ 8 & 2 & -10 \end{bmatrix} D=[351204],E=[121234123]D = \begin{bmatrix} 3 & 5 \\ 1 & 2 \\ 0 & -4 \end{bmatrix}, \quad E = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 3 & 4 \\ 1 & 2 & 3 \end{bmatrix}

The tasks are:

  1. Calculate C+DTC + D^T where DTD^T is the transpose of matrix DD.
  2. Scalar multiplication 13C\frac{1}{3} C.
  3. Matrix multiplication ABAB.
  4. Find the inverse of matrix BB, B1B^{-1}.
  5. Calculate the determinant of matrix EE.

Let me go step by step and solve these.Here are the solutions for the given tasks:

  1. C+DTC + D^T: [95013414]\begin{bmatrix} 9 & 5 & 0 \\ 13 & 4 & -14 \end{bmatrix}

  2. 13C\frac{1}{3} C: [21.3302.670.673.33]\begin{bmatrix} 2 & 1.33 & 0 \\ 2.67 & 0.67 & -3.33 \end{bmatrix}

  3. Matrix multiplication ABAB: [07]\begin{bmatrix} 0 & 7 \end{bmatrix}

  4. Inverse of matrix BB, B1B^{-1}: [0.710.430.140.29]\begin{bmatrix} 0.71 & 0.43 \\ 0.14 & 0.29 \end{bmatrix}

  5. Determinant of matrix EE: Determinant of E=2.0\text{Determinant of } E = -2.0

Let me know if you'd like further explanation or details on any part of this.

Related questions:

  1. What are the properties of the transpose of a matrix?
  2. How does scalar multiplication affect each element of a matrix?
  3. Why does the inverse of a matrix matter, and how is it calculated?
  4. What does the determinant of a matrix signify geometrically?
  5. How can matrix multiplication be interpreted in terms of linear transformations?

Tip:

Always verify if a matrix is invertible by checking if its determinant is non-zero before calculating the inverse.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Matrix operations
Scalar multiplication
Matrix addition
Matrix multiplication
Matrix inverse
Determinant

Formulas

Matrix addition: C + D^T
Scalar multiplication: (1/3)C
Matrix multiplication: AB
Inverse of a 2x2 matrix: B^-1 = (1/det(B)) * adj(B)
Determinant of a 3x3 matrix

Theorems

Matrix transpose properties
Matrix multiplication properties
Determinant calculation

Suitable Grade Level

College/University level