Math Problem Statement

Diketahui matriks A = [[1, 2], [3, 4]] dan matriks B = [[-1, 1], [2, -2], [-3, 3]] serta B^T adalah transpos dari matriks B. Hasil dari A^2 * B^T adalah...

Solution

The problem asks to find the result of A2BTA^2 \cdot B^T, where matrices AA and BB are given, and BTB^T is the transpose of matrix BB. Let's break it down:

Given matrices: A=(1234),B=(112233)A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}, \quad B = \begin{pmatrix} -1 & 1 \\ 2 & -2 \\ -3 & 3 \end{pmatrix}

  1. Step 1: Compute A2A^2

    A2A^2 is found by multiplying matrix AA by itself: A2=AA=(1234)(1234)A^2 = A \cdot A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \cdot \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} Perform matrix multiplication to get A2A^2.

  2. Step 2: Compute the transpose of BB

    The transpose of matrix BB, denoted BTB^T, is obtained by swapping rows with columns: BT=(123123)B^T = \begin{pmatrix} -1 & 2 & -3 \\ 1 & -2 & 3 \end{pmatrix}

  3. Step 3: Multiply A2A^2 with BTB^T

    After finding A2A^2 and BTB^T, multiply them together: A2BTA^2 \cdot B^T Perform matrix multiplication to get the result.

I will now calculate these steps.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Matrix Multiplication
Matrix Transpose
Linear Algebra

Formulas

Matrix Multiplication: C = A * B
Matrix Transpose: A^T = Swap rows with columns

Theorems

Matrix Multiplication
Transpose of a Matrix

Suitable Grade Level

Grades 11-12 or Undergraduate