Math Problem Statement

Prepare matlab code find The transformation parameters and their corresponding standard deviations in veis model using this image

Prepare MATLAB code to find the transformation parameters and their corresponding standard deviations in the Veis model using this image.

Solution

To create a MATLAB code for finding the transformation parameters and their corresponding standard deviations based on the Veis transformation model as depicted in the provided image, we will follow these steps:

Steps:

  1. Define the Veis Transformation Model based on the information given in the image.

    • The rotation matrix RVR_V and translation vector TT will be utilized to find the transformation parameters.
    • From the equations, we will use least squares adjustment to compute the unknown parameters tx,ty,tz,ΔSt_x, t_y, t_z, \Delta S, etc.
  2. Matrix Form of the Model:

    • Eq. (41) provides a system of linear equations that can be represented in the form: V=AXLV = A X - L
    • Use the least-squares method to solve this system for the unknowns.
  3. Covariance Matrix and Standard Deviations:

    • Once the least squares solution is obtained, compute the covariance matrix to find the standard deviations of the transformation parameters.

Here’s the MATLAB code outline based on the Veis transformation model from the image:

matlab
% MATLAB code to find transformation parameters in the Veis model % Data points in source datum (Everest 1830) % [X1, Y1, Z1]: Coordinates of source points in the source datum % [X2, Y2, Z2]: Coordinates of corresponding points in the target datum % These can be input as example coordinates or from a dataset X1 = [ ... ]; % Fill in source X coordinates Y1 = [ ... ]; % Fill in source Y coordinates Z1 = [ ... ]; % Fill in source Z coordinates X2 = [ ... ]; % Fill in target X coordinates Y2 = [ ... ]; % Fill in target Y coordinates Z2 = [ ... ]; % Fill in target Z coordinates % Number of points n = length(X1); % Construct matrix A based on Eq. (41) A = zeros(3*n, 7); % For transformation parameters (tx, ty, tz, eta, epsilon, deltaS, lambda) for i = 1:n A(3*i-2:3*i, :) = [ 1, 0, 0, Y1(i)*sin(phi)*cos(lambda) - Z1(i)*cos(phi)*sin(lambda), Z1(i)*cos(lambda), -Y1(i)*sin(lambda), X1(i); 0, 1, 0, X1(i)*sin(lambda)*cos(phi) - Z1(i)*cos(lambda), -Z1(i)*sin(phi), X1(i)*cos(lambda), Y1(i); 0, 0, 1, -X1(i)*sin(lambda) + Y1(i)*cos(lambda), Z1(i)*cos(phi)*cos(lambda), -Y1(i)*sin(phi), Z1(i); ]; end % Construct vector L based on Eq. (41) L = zeros(3*n, 1); for i = 1:n L(3*i-2:3*i) = [X2(i) - X1(i); Y2(i) - Y1(i); Z2(i) - Z1(i)]; end % Solve using least squares X = A \ L; % X contains the transformation parameters [tx, ty, tz, eta, epsilon, deltaS, lambda] % Compute residuals and covariance matrix V = A * X - L; sigma_0 = sqrt((V' * V) / (3*n - 7)); % Standard error of unit weight % Covariance matrix of the unknown parameters Q = inv(A' * A); Cov_X = sigma_0^2 * Q; % Standard deviations of the parameters std_dev = sqrt(diag(Cov_X)); % Display the results fprintf('Transformation parameters:\n'); fprintf('tx = %.6f ± %.6f\n', X(1), std_dev(1)); fprintf('ty = %.6f ± %.6f\n', X(2), std_dev(2)); fprintf('tz = %.6f ± %.6f\n', X(3), std_dev(3)); fprintf('eta = %.6f ± %.6f\n', X(4), std_dev(4)); fprintf('epsilon = %.6f ± %.6f\n', X(5), std_dev(5)); fprintf('deltaS = %.6f ± %.6f\n', X(6), std_dev(6)); fprintf('lambda = %.6f ± %.6f\n', X(7), std_dev(7));

Breakdown of Code:

  • Input Data: The coordinates X1,Y1,Z1X1, Y1, Z1 and X2,Y2,Z2X2, Y2, Z2

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Geospatial Transformation
Least Squares Method
Matrix Algebra

Formulas

Veis transformation matrix formula
Rotation matrix R_V
Least squares adjustment formula: V = A X - L

Theorems

Least squares method
Covariance matrix computation

Suitable Grade Level

Postgraduate