Math Problem Statement

Use a graph and/or level curves to find the local maximum and minimum values and saddle points of the function. Then use calculus to find these values precisely. (Enter your answers as a comma-separated list. If an answer does not exist, enter DNE.)

f(xy) = sin(x) + sin(y) + cos(x + y) + 9,    0 ≤ x ≤ 𝜋/4,    0 ≤ y ≤ 𝜋/4

Solution

To solve this problem, we will follow these steps:

  1. Find the critical points by setting the partial derivatives with respect to xx and yy equal to zero.
  2. Use the second derivative test to classify these critical points as local maxima, local minima, or saddle points.
  3. Verify the solutions graphically by plotting the level curves and identifying the behavior of the function.

Step 1: Find the Critical Points

Let f(x,y)=sin(x)+sin(y)+cos(x+y)+9f(x, y) = \sin(x) + \sin(y) + \cos(x + y) + 9.

Partial Derivatives

Compute the partial derivatives with respect to xx and yy:

fx=cos(x)sin(x+y)f_x = \cos(x) - \sin(x + y) fy=cos(y)sin(x+y)f_y = \cos(y) - \sin(x + y)

Set these partial derivatives equal to zero to find the critical points:

cos(x)sin(x+y)=0\cos(x) - \sin(x + y) = 0 cos(y)sin(x+y)=0\cos(y) - \sin(x + y) = 0

Subtract the two equations:

cos(x)cos(y)=0    cos(x)=cos(y)\cos(x) - \cos(y) = 0 \implies \cos(x) = \cos(y)

This implies that x=yx = y within the given domain 0xπ40 \leq x \leq \frac{\pi}{4}, 0yπ40 \leq y \leq \frac{\pi}{4}.

Solving for xx and yy

With x=yx = y, we substitute back into fx=0f_x = 0:

cos(x)sin(2x)=0\cos(x) - \sin(2x) = 0

Using the double-angle identity, sin(2x)=2sin(x)cos(x)\sin(2x) = 2\sin(x)\cos(x), we get:

cos(x)2sin(x)cos(x)=0    cos(x)(12sin(x))=0\cos(x) - 2\sin(x)\cos(x) = 0 \implies \cos(x)(1 - 2\sin(x)) = 0

Thus, cos(x)=0\cos(x) = 0 or sin(x)=12\sin(x) = \frac{1}{2}.

  • cos(x)=0\cos(x) = 0 does not yield any solutions in the interval 0xπ40 \leq x \leq \frac{\pi}{4}.
  • sin(x)=12\sin(x) = \frac{1}{2} gives x=π6x = \frac{\pi}{6}. Thus, x=y=π6x = y = \frac{\pi}{6}.

The critical point is (π6,π6)\left(\frac{\pi}{6}, \frac{\pi}{6}\right).

Step 2: Use the Second Derivative Test

Compute the second partial derivatives:

fxx=sin(x)cos(x+y)f_{xx} = -\sin(x) - \cos(x + y) fyy=sin(y)cos(x+y)f_{yy} = -\sin(y) - \cos(x + y) fxy=fyx=cos(x+y)f_{xy} = f_{yx} = -\cos(x + y)

The discriminant DD is given by:

D=fxxfyy(fxy)2D = f_{xx} f_{yy} - (f_{xy})^2

Evaluate DD at the critical point (π6,π6)\left( \frac{\pi}{6}, \frac{\pi}{6} \right):

fxx=sin(π6)cos(π3)=1212=1f_{xx} = -\sin\left(\frac{\pi}{6}\right) - \cos\left(\frac{\pi}{3}\right) = -\frac{1}{2} - \frac{1}{2} = -1 fyy=sin(π6)cos(π3)=1f_{yy} = -\sin\left(\frac{\pi}{6}\right) - \cos\left(\frac{\pi}{3}\right) = -1 fxy=cos(π3)=12f_{xy} = -\cos\left(\frac{\pi}{3}\right) = -\frac{1}{2}

Thus, the discriminant is:

D=(1)(1)(12)2=114=34D = (-1)(-1) - \left(-\frac{1}{2}\right)^2 = 1 - \frac{1}{4} = \frac{3}{4}

Since D>0D > 0 and fxx<0f_{xx} < 0, the critical point (π6,π6)\left( \frac{\pi}{6}, \frac{\pi}{6} \right) is a local maximum.

Step 3: Graph and Level Curves

The level curves can be plotted for f(x,y)f(x, y), showing the contours of the function over the given domain to confirm the local maximum at (π6,π6)\left(\frac{\pi}{6}, \frac{\pi}{6}\right). The graphical representation will reveal whether there are any saddle points or other significant features within the domain.

Summary of Results

The function has a local maximum at:

(π6,π6),f(π6,π6)=sin(π6)+sin(π6)+cos(π3)+9=12+12+12+9=10.5\left(\frac{\pi}{6}, \frac{\pi}{6}\right), \quad f\left(\frac{\pi}{6}, \frac{\pi}{6}\right) = \sin\left(\frac{\pi}{6}\right) + \sin\left(\frac{\pi}{6}\right) + \cos\left(\frac{\pi}{3}\right) + 9 = \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + 9 = 10.5

There are no other local maxima, minima, or saddle points in the specified domain.

Would you like me to generate the graph and level curves for better visualization?

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Multivariable Calculus
Critical Points
Level Curves
Second Derivative Test

Formulas

Partial derivatives: f_x = cos(x) - sin(x + y), f_y = cos(y) - sin(x + y)
Second derivatives: f_{xx}, f_{yy}, f_{xy}
Discriminant: D = f_{xx} f_{yy} - (f_{xy})^2
Trigonometric identities: sin(2x) = 2sin(x)cos(x)

Theorems

Second Derivative Test for Local Maxima and Minima
Trigonometric Function Properties

Suitable Grade Level

Undergraduate (Calculus III)