Math Problem Statement

2 points

Let the set {(a,b),(c,d)}{(a,b),(c,d)} be a linearly independent subset of R2R2. Choose the set of correct options.

{(a,b,0),(c,d,0)}{(a,b,0),(c,d,0)} must be a linearly independent subset of R3R3.

{(a,b,0),(c,d,0),(0,0,1)}{(a,b,0),(c,d,0),(0,0,1)} must be a linearly independent subset of R3R3.

{(a,b,0),(c,d,0),(1,0,0)}{(a,b,0),(c,d,0),(1,0,0)} must be a linearly independent subset of R3R3.

{(a,b,0),(c,d,0),(0,1,0)}{(a,b,0),(c,d,0),(0,1,0)} must be a linearly independent subset of R3R3

Solution

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Linear Algebra
Linear Independence
Vector Spaces
R^3
R^2

Formulas

x1(a, b) + x2(c, d) = (0, 0)
x1(a, b, 0) + x2(c, d, 0) + x3(0, 0, 1) = (0, 0, 0)

Theorems

Linear Independence Theorem
Vector Space Theorem

Suitable Grade Level

College-Level (Linear Algebra)