Math Problem Statement

evaluate integral of (x^2+ixy)dz along the curve x=t,y=t^3 with the limits of (1,1) and (2,8)

Solution

To evaluate the integral of (x2+ixy)dz(x^2 + ixy)\, dz along the curve x=t,y=t3x = t, y = t^3 with the limits t=1t = 1 to t=2t = 2, we need to parametrize the curve and compute the corresponding integral in terms of tt.

Step 1: Parametrize the curve

Given the curve is parametrized by:

  • x=tx = t
  • y=t3y = t^3

The variable zz will follow the path in the complex plane as: dz=ddt(x+iy)dt=ddt(t+it3)dt=(1+3it2)dtdz = \frac{d}{dt}(x + iy)\, dt = \frac{d}{dt}(t + it^3)\, dt = (1 + 3it^2)\, dt

Step 2: Substitute into the integral

The integral becomes: C(x2+ixy)dz\int_{C} (x^2 + ixy)\, dz Substitute x=tx = t and y=t3y = t^3: x2+ixy=t2+it(t3)=t2+it4x^2 + ixy = t^2 + it(t^3) = t^2 + it^4 Also, dz=(1+3it2)dtdz = (1 + 3it^2)\, dt, so the integral is: 12(t2+it4)(1+3it2)dt\int_{1}^{2} (t^2 + it^4)(1 + 3it^2)\, dt

Step 3: Expand the integrand

Now expand (t2+it4)(1+3it2)(t^2 + it^4)(1 + 3it^2): (t2+it4)(1+3it2)=t2(1)+t2(3it2)+it4(1)+it4(3it2)(t^2 + it^4)(1 + 3it^2) = t^2(1) + t^2(3it^2) + it^4(1) + it^4(3it^2) Simplifying each term: =t2+3it4+it43t6= t^2 + 3it^4 + it^4 - 3t^6 =t23t6+i(3t4+t4)=t23t6+i4t4= t^2 - 3t^6 + i(3t^4 + t^4) = t^2 - 3t^6 + i4t^4

Step 4: Integrate

The integral becomes: 12(t23t6+i4t4)dt\int_{1}^{2} (t^2 - 3t^6 + i4t^4)\, dt Now, break this into two integrals: 12(t23t6)dt+i124t4dt\int_{1}^{2} (t^2 - 3t^6)\, dt + i\int_{1}^{2} 4t^4\, dt

First integral: 12(t23t6)dt\int_{1}^{2} (t^2 - 3t^6)\, dt

12t2dt=[t33]12=8313=73\int_{1}^{2} t^2\, dt = \left[\frac{t^3}{3}\right]_1^2 = \frac{8}{3} - \frac{1}{3} = \frac{7}{3} 12t6dt=[t77]12=128717=1277\int_{1}^{2} t^6\, dt = \left[\frac{t^7}{7}\right]_1^2 = \frac{128}{7} - \frac{1}{7} = \frac{127}{7} So, 12(t23t6)dt=7331277=733817\int_{1}^{2} (t^2 - 3t^6)\, dt = \frac{7}{3} - 3 \cdot \frac{127}{7} = \frac{7}{3} - \frac{381}{7}

To subtract, find a common denominator: 73=4921,3817=114321\frac{7}{3} = \frac{49}{21}, \quad \frac{381}{7} = \frac{1143}{21} 4921114321=109421\frac{49}{21} - \frac{1143}{21} = \frac{-1094}{21}

Second integral: i124t4dti \int_{1}^{2} 4t^4\, dt

124t4dt=4[t55]12=4(32515)=4315=1245\int_{1}^{2} 4t^4\, dt = 4 \cdot \left[\frac{t^5}{5}\right]_1^2 = 4 \cdot \left(\frac{32}{5} - \frac{1}{5}\right) = 4 \cdot \frac{31}{5} = \frac{124}{5} Thus, the second part is: i1245i \cdot \frac{124}{5}

Step 5: Combine the results

The full result is: 109421+i1245\frac{-1094}{21} + i \cdot \frac{124}{5}

Final Answer:

C(x2+ixy)dz=109421+i1245\int_C (x^2 + ixy)\, dz = \frac{-1094}{21} + i \cdot \frac{124}{5}

Let me know if you need further clarification or details about any of the steps!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Complex Analysis
Parametric Integration
Line Integrals
Complex Functions

Formulas

Parametrization of a curve: x = t, y = t^3
dz = (dx + i*dy)
Line integral: ∫(f(x,y) dz)

Theorems

Fundamental Theorem of Calculus for Complex Functions
Line Integral Theorem

Suitable Grade Level

College (Undergraduate)