Math Problem Statement

Find the limit. (If the limit is infinite, enter '∞' or '-∞', as appropriate. If the limit does not otherwise exist, enter DNE.)

 lim x→∞ 

9 − 

x

3 + 

x  

Solution

To find the limit of the given expression as xx \to \infty, the function is:

limx(9x3+x)\lim_{x \to \infty} \left( 9 - \frac{x}{3 + x} \right)

Step-by-Step Solution:

  1. Rewrite the expression:

limx(9x3+x)\lim_{x \to \infty} \left( 9 - \frac{x}{3 + x} \right)

We want to analyze the behavior of x3+x\frac{x}{3 + x} as xx \to \infty.

  1. Divide the numerator and denominator by xx:

x3+x=xx(3x+1)=13x+1\frac{x}{3 + x} = \frac{x}{x \left( \frac{3}{x} + 1 \right)} = \frac{1}{\frac{3}{x} + 1}

As xx \to \infty, the term 3x0\frac{3}{x} \to 0. So, the expression simplifies to:

13x+111=1\frac{1}{\frac{3}{x} + 1} \to \frac{1}{1} = 1

  1. Substitute back into the original limit:

Now

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Limits
Asymptotic Behavior
Rational Functions

Formulas

lim x→∞ (9 − x / (3 + x))
Division of numerator and denominator by x

Theorems

Limit Properties
Asymptotic Limits

Suitable Grade Level

Grades 10-12