Math Problem Statement

jawab soal ini

Jika lim(x→2) (∛(a/x³ + b/x³ - 1)) = A, maka nilai lim(x→2) (∛(a/27 + b/27x³ + x - 1)) adalah?

Solution

The given problem asks for the limit of a complex expression. Here's the breakdown:

We are given the condition:

limx2(ax3+bx313)=A\lim_{x \to 2} \left( \sqrt[3]{\frac{a}{x^3} + \frac{b}{x^3} - 1} \right) = A

Now, we are asked to find:

limx2(a27+b27x3+x13)\lim_{x \to 2} \left( \sqrt[3]{\frac{a}{27} + \frac{b}{27x^3} + x - 1} \right)

Step 1: Calculate the first limit

For the first limit, we need to analyze the expression when x2x \to 2. Substituting x=2x = 2:

limx2(ax3+bx313)\lim_{x \to 2} \left( \sqrt[3]{\frac{a}{x^3} + \frac{b}{x^3} - 1} \right)

At x=2x = 2, we get:

a23+b231=a8+b81=a+b81\frac{a}{2^3} + \frac{b}{2^3} - 1 = \frac{a}{8} + \frac{b}{8} - 1 = \frac{a + b}{8} - 1

This equals AA, so:

A=a+b81A=a+b88A = \frac{a + b}{8} - 1 \quad \Rightarrow \quad A = \frac{a + b - 8}{8}

Step 2: Calculate the second limit

Now, for the second expression, substitute x=2x = 2 into:

limx2(a27+b27x3+x13)\lim_{x \to 2} \left( \sqrt[3]{\frac{a}{27} + \frac{b}{27x^3} + x - 1} \right)

Substituting x=2x = 2:

[ \frac{a}{27} + \frac{b}{27(2^3)} + 2 - 1 = \frac{a}{27} + \frac{b}{27 \times 8} + 1 = \frac{a}{27} + \frac{b}{216} + 1 \

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Limits
Cubic Roots
Algebraic Expressions

Formulas

Limit formula for rational expressions
Cubic root function: ∛x
Substitution method for limits

Theorems

Limit Theorem
Continuity in Limits

Suitable Grade Level

Grades 11-12 (High School)