Math Problem Statement

Find the exact value of each expression, if it is defined. Express your answer in radians.

Solution

Let's solve the inverse trigonometric expressions given in the image:

(a) sin1(12)\sin^{-1}\left( -\frac{1}{2} \right)

This is asking for the angle θ\theta such that: sin(θ)=12\sin(\theta) = -\frac{1}{2} We know that sin(θ)=12\sin(\theta) = -\frac{1}{2} occurs at: θ=π6(in Quadrant IV)\theta = -\frac{\pi}{6} \quad \text{(in Quadrant IV)} So, the exact value of sin1(12)\sin^{-1}\left( -\frac{1}{2} \right) is: π6radians-\frac{\pi}{6} \, \text{radians}

(b) cos1(12)\cos^{-1}\left( \frac{1}{2} \right)

This is asking for the angle θ\theta such that: cos(θ)=12\cos(\theta) = \frac{1}{2} We know that cos(θ)=12\cos(\theta) = \frac{1}{2} occurs at: θ=π3(in Quadrant I)\theta = \frac{\pi}{3} \quad \text{(in Quadrant I)} So, the exact value of cos1(12)\cos^{-1}\left( \frac{1}{2} \right) is: π3radians\frac{\pi}{3} \, \text{radians}

(c) tan1(33)\tan^{-1}\left( \frac{\sqrt{3}}{3} \right)

This is asking for the angle θ\theta such that: tan(θ)=33\tan(\theta) = \frac{\sqrt{3}}{3} We know that tan(θ)=33\tan(\theta) = \frac{\sqrt{3}}{3} occurs at: θ=π6(in Quadrant I)\theta = \frac{\pi}{6} \quad \text{(in Quadrant I)} So, the exact value of tan1(33)\tan^{-1}\left( \frac{\sqrt{3}}{3} \right) is: π6radians\frac{\pi}{6} \, \text{radians}

Summary:

  • (a) sin1(12)=π6\sin^{-1}\left( -\frac{1}{2} \right) = -\frac{\pi}{6}
  • (b) cos1(12)=π3\cos^{-1}\left( \frac{1}{2} \right) = \frac{\pi}{3}
  • (c) tan1(33)=π6\tan^{-1}\left( \frac{\sqrt{3}}{3} \right) = \frac{\pi}{6}

Would you like any further details or clarifications?

Here are five related questions you can consider:

  1. What is the range of the inverse sine function sin1(x)\sin^{-1}(x)?
  2. How does the unit circle help in finding inverse trigonometric values?
  3. What are the principal values for tan1(x)\tan^{-1}(x)?
  4. How can you determine when inverse trigonometric values are undefined?
  5. What are the differences in behavior between sin1(x)\sin^{-1}(x), cos1(x)\cos^{-1}(x), and tan1(x)\tan^{-1}(x)?

Tip: Remember that inverse trigonometric functions return principal values, typically within specific ranges, depending on the function!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Inverse Trigonometric Functions
Radians
Sine
Cosine
Tangent

Formulas

sin^(-1)(x) - inverse sine function
cos^(-1)(x) - inverse cosine function
tan^(-1)(x) - inverse tangent function

Theorems

Inverse Trigonometric Functions Theorem
Unit Circle Theorem

Suitable Grade Level

Grades 10-12