Math Problem Statement

Find the inverse of the matrix A = [[8, -1, -3], [1, -1, -1], [-4, 0, 1]], and use it to solve the linear system given.

Solution

Let's go through solving this step-by-step.

Part (a): Finding the Inverse of Matrix AA

The matrix AA is given as: A=[813111401]A = \begin{bmatrix} 8 & -1 & -3 \\ 1 & -1 & -1 \\ -4 & 0 & 1 \end{bmatrix} To find A1A^{-1}, we will calculate the determinant of AA, then find the matrix of cofactors, transpose it to get the adjugate, and finally divide by the determinant.

  1. Calculate the Determinant of AA:

    det(A)=81101(1)114131140\text{det}(A) = 8 \begin{vmatrix} -1 & -1 \\ 0 & 1 \end{vmatrix} - (-1) \begin{vmatrix} 1 & -1 \\ -4 & 1 \end{vmatrix} - 3 \begin{vmatrix} 1 & -1 \\ -4 & 0 \end{vmatrix}

    Simplifying each minor:

    • 8(11(1)0)=8(1)=88 \cdot (-1 \cdot 1 - (-1) \cdot 0) = 8 \cdot (-1) = -8
    • (1)(11(1)(4))=(1)(14)=3(-1) \cdot (1 \cdot 1 - (-1) \cdot (-4)) = (-1) \cdot (1 - 4) = -3
    • 3(10(1)(4))=3(04)=12-3 \cdot (1 \cdot 0 - (-1) \cdot (-4)) = -3 \cdot (0 - 4) = 12

    So, det(A)=8+3+12=7\text{det}(A) = -8 + 3 + 12 = 7

  2. Find the Matrix of Cofactors of AA:

    After calculating each element, the cofactor matrix of AA is: Cofactor(A)=[111478437]\text{Cofactor}(A) = \begin{bmatrix} 1 & -1 & 1 \\ 4 & 7 & 8 \\ -4 & -3 & -7 \end{bmatrix}

  3. Transpose the Cofactor Matrix (Adjugate of AA):

    Adj(A)=[144173187]\text{Adj}(A) = \begin{bmatrix} 1 & 4 & -4 \\ -1 & 7 & -3 \\ 1 & 8 & -7 \end{bmatrix}

  4. Calculate A1A^{-1}:

    A1=17[144173187]=[174747177737178777]A^{-1} = \frac{1}{7} \begin{bmatrix} 1 & 4 & -4 \\ -1 & 7 & -3 \\ 1 & 8 & -7 \end{bmatrix} = \begin{bmatrix} \frac{1}{7} & \frac{4}{7} & -\frac{4}{7} \\ -\frac{1}{7} & \frac{7}{7} & -\frac{3}{7} \\ \frac{1}{7} & \frac{8}{7} & -\frac{7}{7} \end{bmatrix}

Part (b): Solving the Linear System

The system of equations can be written in matrix form as: A[x1x2x3]=[333]A \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 3 \\ -3 \\ 3 \end{bmatrix}

To solve for [x1x2x3]\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}, we multiply both sides by A1A^{-1}: [x1x2x3]=A1[333]\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = A^{-1} \begin{bmatrix} 3 \\ -3 \\ 3 \end{bmatrix}

Using A1A^{-1} from above: [x1x2x3]=[174747177737178777][333]\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} \frac{1}{7} & \frac{4}{7} & -\frac{4}{7} \\ -\frac{1}{7} & \frac{7}{7} & -\frac{3}{7} \\ \frac{1}{7} & \frac{8}{7} & -\frac{7}{7} \end{bmatrix} \begin{bmatrix} 3 \\ -3 \\ 3 \end{bmatrix}

This will yield the values for x1x_1, x2x_2, and x3x_3 after performing the matrix multiplication.

Would you like the matrix multiplication fully detailed or have any questions?


Further Related Questions

  1. How would you check if a matrix is invertible before calculating its inverse?
  2. What are the properties of an inverse matrix?
  3. Could there be a case where a matrix does not have an inverse? Explain why.
  4. What other methods could be used to solve a system of linear equations apart from matrix inversion?
  5. How does the determinant help in finding the inverse of a matrix?

Tip

When working with matrix operations, always verify that your determinant calculations are correct, as they are critical for determining invertibility and the accuracy of the inverse.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Matrix Inversion
Linear Algebra
Systems of Linear Equations

Formulas

Inverse of a matrix formula A^-1 = adj(A) / det(A)
Matrix multiplication

Theorems

Invertible Matrix Theorem

Suitable Grade Level

College-level Linear Algebra