Math Problem Statement

Find the inverse of the following equation: y = 8x + 4

Solution

To find the inverse of the equation y=8x+4y = 8x + 4, let's go through the steps required.

Step-by-step solution:

  1. Start with the equation: y=8x+4y = 8x + 4

  2. Swap xx and yy: To find the inverse, we switch xx and yy. x=8y+4x = 8y + 4

  3. Solve for yy: Now, we solve for yy, which will give us the inverse function.

    • First, subtract 4 from both sides: x4=8yx - 4 = 8y

    • Now, divide both sides by 8: y=x48y = \frac{x - 4}{8}

  4. Write the inverse function: The inverse of the function is: f1(x)=x48f^{-1}(x) = \frac{x - 4}{8}

This is the inverse of the equation y=8x+4y = 8x + 4.


Would you like more details or have any questions?

Here are some related questions for further practice:

  1. What is the inverse of y=5x+3y = 5x + 3?
  2. How do you find the inverse of a quadratic function?
  3. What is the significance of finding an inverse function?
  4. Can all functions have inverses? Why or why not?
  5. What happens to the slope in a linear function's inverse?

Tip: To verify if your inverse is correct, substitute the inverse function back into the original and see if you get xx as the result.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Algebra
Inverse Functions
Linear Equations

Formulas

Inverse of a linear equation
y = mx + b

Theorems

Inverse function theorem

Suitable Grade Level

Grades 9-12