Math Problem Statement

find the integral of x^2+3/x^3+2x^2-4x-8 from(1,-1)

Solution

To compute the integral of x2+3x3+2x24x8\frac{x^2 + 3}{x^3 + 2x^2 - 4x - 8} over the interval [1,1][1, -1], we proceed as follows:

Step 1: Analyze the integrand

The denominator x3+2x24x8x^3 + 2x^2 - 4x - 8 factors into: x3+2x24x8=(x+2)(x22).x^3 + 2x^2 - 4x - 8 = (x+2)(x^2 - 2). Thus, the integral becomes: 11x2+3(x+2)(x22)dx.\int_{1}^{-1} \frac{x^2 + 3}{(x+2)(x^2 - 2)} \, dx.

Step 2: Partial Fraction Decomposition

We decompose x2+3(x+2)(x22)\frac{x^2 + 3}{(x+2)(x^2 - 2)} into partial fractions: x2+3(x+2)(x22)=Ax+2+Bx+Cx22,\frac{x^2 + 3}{(x+2)(x^2 - 2)} = \frac{A}{x+2} + \frac{Bx + C}{x^2 - 2}, where AA, BB, and CC are constants to be determined.

Multiplying through by the denominator (x+2)(x22)(x+2)(x^2 - 2), we get: x2+3=A(x22)+(Bx+C)(x+2).x^2 + 3 = A(x^2 - 2) + (Bx + C)(x + 2).

Expanding: x2+3=A(x22)+Bx2+2Bx+Cx+2C.x^2 + 3 = A(x^2 - 2) + Bx^2 + 2Bx + Cx + 2C.

Combine like terms: x2+3=(A+B)x2+(2B+C)x+(2A+2C).x^2 + 3 = (A + B)x^2 + (2B + C)x + (-2A + 2C).

Equating coefficients:

  1. A+B=1A + B = 1 (coefficient of x2x^2),
  2. 2B+C=02B + C = 0 (coefficient of xx),
  3. 2A+2C=3-2A + 2C = 3 (constant term).

Step 3: Solve the system of equations

From A+B=1A + B = 1: B=1A.B = 1 - A.

From 2B+C=02B + C = 0: C=2B=2(1A)=2+2A.C = -2B = -2(1 - A) = -2 + 2A.

Substitute B=1AB = 1 - A and C=2+2AC = -2 + 2A into 2A+2C=3-2A + 2C = 3: 2A+2(2+2A)=3.-2A + 2(-2 + 2A) = 3. 2A4+4A=3.-2A - 4 + 4A = 3. 2A=7A=72.2A = 7 \quad \Rightarrow \quad A = \frac{7}{2}.

Using A+B=1A + B = 1: B=172=52.B = 1 - \frac{7}{2} = -\frac{5}{2}.

Using C=2+2AC = -2 + 2A: C=2+2(72)=2+7=5.C = -2 + 2\left(\frac{7}{2}\right) = -2 + 7 = 5.

Thus: A=72,B=52,C=5.A = \frac{7}{2}, \quad B = -\frac{5}{2}, \quad C = 5.

Step 4: Write the partial fraction decomposition

The decomposition is: x2+3(x+2)(x22)=72x+2+52x+5x22.\frac{x^2 + 3}{(x+2)(x^2 - 2)} = \frac{\frac{7}{2}}{x+2} + \frac{-\frac{5}{2}x + 5}{x^2 - 2}.

Step 5: Set up the integral

11x2+3(x+2)(x22)dx=1172x+2dx+1152x+5x22dx.\int_{1}^{-1} \frac{x^2 + 3}{(x+2)(x^2 - 2)} \, dx = \int_{1}^{-1} \frac{\frac{7}{2}}{x+2} \, dx + \int_{1}^{-1} \frac{-\frac{5}{2}x + 5}{x^2 - 2} \, dx.

Each term is now ready to integrate:

  1. 72x+2dx=72lnx+2\int \frac{\frac{7}{2}}{x+2} \, dx = \frac{7}{2} \ln|x+2|,
  2. The second term requires substitution for x22x^2 - 2.

Step 6: Verify convergence

The integral bounds from 11 to 1-1 include points where x+2=0x+2 = 0, which causes a singularity at x=2x = -2. This makes the integral improper.

We need to check whether the integral converges or not. Numerical or advanced analysis will confirm divergence due to the singularity at x=2x = -2.

Would you like me to proceed with numerical evaluation or analyze further?

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Integration
Partial Fraction Decomposition
Improper Integrals
Polynomial Factorization

Formulas

Partial fraction decomposition: f(x) = A/(x+a) + (Bx+C)/(x^2 + bx + c)
Integral of 1/(x+a): ∫1/(x+a) dx = ln|x+a|
Polynomial factorization: x^3 + 2x^2 - 4x - 8 = (x+2)(x^2 - 2)

Theorems

Fundamental Theorem of Calculus
Logarithmic Integration Rule

Suitable Grade Level

Undergraduate Mathematics or Advanced High School Calculus