Math Problem Statement

Solve the following integrals: 1. ∫ 3x²√(x³ + 1) dx 2. ∫ (2x) / √(x² + 1) dx

Solution

Let's solve both integrals step by step:


1. First Integral:

3x2x3+1dx\int 3x^2 \sqrt{x^3 + 1} \, dx

Solution: We use substitution to simplify the expression.

  • Let u=x3+1u = x^3 + 1, so that du=3x2dxdu = 3x^2 \, dx.

Rewriting the integral: 3x2x3+1dx=udu\int 3x^2 \sqrt{x^3 + 1} \, dx = \int \sqrt{u} \, du

Now integrate u\sqrt{u}: udu=u1/2du=23u3/2+C\int \sqrt{u} \, du = \int u^{1/2} \, du = \frac{2}{3} u^{3/2} + C

Finally, substitute u=x3+1u = x^3 + 1 back: 3x2x3+1dx=23(x3+1)3/2+C\int 3x^2 \sqrt{x^3 + 1} \, dx = \frac{2}{3} (x^3 + 1)^{3/2} + C


2. Second Integral:

2xx2+1dx\int \frac{2x}{\sqrt{x^2 + 1}} \, dx

Solution: We again use substitution.

  • Let u=x2+1u = x^2 + 1, so du=2xdxdu = 2x \, dx.

Rewriting the integral: 2xx2+1dx=1udu\int \frac{2x}{\sqrt{x^2 + 1}} \, dx = \int \frac{1}{\sqrt{u}} \, du

Now integrate 1u\frac{1}{\sqrt{u}}: u1/2du=2u1/2+C\int u^{-1/2} \, du = 2u^{1/2} + C

Substitute u=x2+1u = x^2 + 1 back: 2xx2+1dx=2x2+1+C\int \frac{2x}{\sqrt{x^2 + 1}} \, dx = 2\sqrt{x^2 + 1} + C


Final Answers:

  1. 3x2x3+1dx=23(x3+1)3/2+C\int 3x^2 \sqrt{x^3 + 1} \, dx = \frac{2}{3} (x^3 + 1)^{3/2} + C
  2. 2xx2+1dx=2x2+1+C\int \frac{2x}{\sqrt{x^2 + 1}} \, dx = 2\sqrt{x^2 + 1} + C

Let me know if you need further clarification or additional steps!

Related Questions:

  1. How do you verify solutions to integrals using differentiation?
  2. How do substitutions like u=x3+1u = x^3 + 1 work in integrals?
  3. How can you apply integration by parts for more complex problems?
  4. What are some other methods for solving square root integrals?
  5. How do you solve definite integrals involving substitutions?

Tip:

Always double-check substitutions by differentiating the substituted function uu to ensure consistency.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Integration
Substitution Method
Simplifying Integrals
Basic Integration Rules

Formulas

Substitution Method: If u = g(x), then du = g'(x) dx.
Power Rule for Integration: ∫ x^n dx = (x^(n+1))/(n+1) + C (for n ≠ -1).
Square Root Integral: ∫ u^(n) du = (u^(n+1))/(n+1) + C.

Theorems

Fundamental Theorem of Calculus
Substitution Method

Suitable Grade Level

Grades 11-12 or College Level