Math Problem Statement

Integrate (1-x^(2))/(1+x^(2))^(2)

Solution

To integrate:

I=1x2(1+x2)2dxI = \int \frac{1 - x^2}{(1+x^2)^2} \, dx

Step 1: Use Substitution

Let:
u=1+x2    du=2xdx    xdx=du2u = 1 + x^2 \implies du = 2x \, dx \implies x \, dx = \frac{du}{2}

Step 2: Express the Integrand

Rewrite 1x21 - x^2:
1x2=1(u1)=2u1 - x^2 = 1 - (u - 1) = 2 - u

The integral becomes:
I=2uu2du2=2u2u2duI = \int \frac{2 - u}{u^2} \cdot \frac{du}{2} = \int \frac{2 - u}{2u^2} \, du

Step 3: Split the Terms

I=(22u2u2u2)duI = \int \left(\frac{2}{2u^2} - \frac{u}{2u^2}\right) du

Simplify:
I=(1u212u)duI = \int \left(\frac{1}{u^2} - \frac{1}{2u}\right) du

Step 4: Integrate Each Term

I=u2du12u1duI = \int u^{-2} \, du - \frac{1}{2} \int u^{-1} \, du

I=1u12lnuI = \frac{-1}{u} - \frac{1}{2} \ln|u|

Step 5: Substitute Back u=1+x2u = 1 + x^2

I=11+x212ln(1+x2)+CI = \frac{-1}{1+x^2} - \frac{1}{2} \ln(1+x^2) + C


Final Answer:
I=11+x212ln(1+x2)+CI = \frac{-1}{1+x^2} - \frac{1}{2} \ln(1+x^2) + C


Would you like further explanation on any of the steps?


Related Problems:

  1. Integrate x2(1+x2)2\frac{x^2}{(1+x^2)^2}
  2. Evaluate 11+x2dx\int \frac{1}{1+x^2} dx
  3. Integrate x(1+x2)2dx\int \frac{x}{(1+x^2)^2} dx
  4. Find the derivative of f(x)=11+x212ln(1+x2)f(x) = \frac{-1}{1+x^2} - \frac{1}{2} \ln(1+x^2)
  5. Evaluate 1x4(1+x2)3dx\int \frac{1 - x^4}{(1+x^2)^3} dx

Tip:

When integrating rational functions, consider substitution with terms from the denominator or factor the numerator to simplify the expression.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Integration
Rational Functions
Substitution Method
Logarithmic Integration

Formulas

∫ u^n du = (u^(n+1))/(n+1) + C for n ≠ -1
∫ u^(-1) du = ln|u| + C
Substitution: Let u = f(x), du = f'(x) dx

Theorems

Fundamental Theorem of Calculus

Suitable Grade Level

Undergraduate Calculus