Math Problem Statement

Integrate using integration by parts

Solution

The integral provided is:

e3βcos(4β)dβ\int e^{3\beta} \cos(4\beta) \, d\beta

To solve this using integration by parts, let's use the method twice. Integration by parts is based on the formula:

udv=uvvdu\int u \, dv = uv - \int v \, du

Step 1: First Application of Integration by Parts

Let: u=e3β,dv=cos(4β)dβu = e^{3\beta}, \quad dv = \cos(4\beta) \, d\beta

Then, we find: du=3e3βdβ,v=14sin(4β)du = 3e^{3\beta} \, d\beta, \quad v = \frac{1}{4} \sin(4\beta)

Now, apply the integration by parts formula: e3βcos(4β)dβ=e3β14sin(4β)14sin(4β)3e3βdβ\int e^{3\beta} \cos(4\beta) \, d\beta = e^{3\beta} \cdot \frac{1}{4} \sin(4\beta) - \int \frac{1}{4} \sin(4\beta) \cdot 3e^{3\beta} \, d\beta

Simplify the expression: =14e3βsin(4β)34e3βsin(4β)dβ= \frac{1}{4} e^{3\beta} \sin(4\beta) - \frac{3}{4} \int e^{3\beta} \sin(4\beta) \, d\beta

Step 2: Second Application of Integration by Parts

Now, we need to solve the integral e3βsin(4β)dβ\int e^{3\beta} \sin(4\beta) \, d\beta.

Let: u=e3β,dv=sin(4β)dβu = e^{3\beta}, \quad dv = \sin(4\beta) \, d\beta

Then: du=3e3βdβ,v=14cos(4β)du = 3e^{3\beta} \, d\beta, \quad v = -\frac{1}{4} \cos(4\beta)

Applying the integration by parts formula again: e3βsin(4β)dβ=14e3βcos(4β)14cos(4β)3e3βdβ\int e^{3\beta} \sin(4\beta) \, d\beta = -\frac{1}{4} e^{3\beta} \cos(4\beta) - \int -\frac{1}{4} \cos(4\beta) \cdot 3e^{3\beta} \, d\beta

Simplify: =14e3βcos(4β)+34e3βcos(4β)dβ= -\frac{1}{4} e^{3\beta} \cos(4\beta) + \frac{3}{4} \int e^{3\beta} \cos(4\beta) \, d\beta

Step 3: Solve for the Original Integral

Now, substitute this back into the equation from Step 1:

e3βcos(4β)dβ=14e3βsin(4β)34[14e3βcos(4β)+34e3βcos(4β)dβ]\int e^{3\beta} \cos(4\beta) \, d\beta = \frac{1}{4} e^{3\beta} \sin(4\beta) - \frac{3}{4} \left[ -\frac{1}{4} e^{3\beta} \cos(4\beta) + \frac{3}{4} \int e^{3\beta} \cos(4\beta) \, d\beta \right]

Simplify and solve for e3βcos(4β)dβ\int e^{3\beta} \cos(4\beta) \, d\beta:

e3βcos(4β)dβ=14e3βsin(4β)+316e3βcos(4β)916e3βcos(4β)dβ\int e^{3\beta} \cos(4\beta) \, d\beta = \frac{1}{4} e^{3\beta} \sin(4\beta) + \frac{3}{16} e^{3\beta} \cos(4\beta) - \frac{9}{16} \int e^{3\beta} \cos(4\beta) \, d\beta

Combine like terms: (1+916)e3βcos(4β)dβ=14e3βsin(4β)+316e3βcos(4β)\left(1 + \frac{9}{16}\right) \int e^{3\beta} \cos(4\beta) \, d\beta = \frac{1}{4} e^{3\beta} \sin(4\beta) + \frac{3}{16} e^{3\beta} \cos(4\beta)

This simplifies to: 2516e3βcos(4β)dβ=14e3βsin(4β)+316e3βcos(4β)\frac{25}{16} \int e^{3\beta} \cos(4\beta) \, d\beta = \frac{1}{4} e^{3\beta} \sin(4\beta) + \frac{3}{16} e^{3\beta} \cos(4\beta)

Finally, solve for the integral: e3βcos(4β)dβ=125e3β(4sin(4β)+3cos(4β))+C\int e^{3\beta} \cos(4\beta) \, d\beta = \frac{1}{25} e^{3\beta} \left(4 \sin(4\beta) + 3 \cos(4\beta)\right) + C

where CC is the constant of integration.

Would you like more details on any part of this solution, or do you have any questions?

Here are some related questions:

  1. How would you approach the integral excos(5x)dx\int e^{x} \cos(5x) \, dx?
  2. What happens if you integrate e2βsin(3β)dβ\int e^{2\beta} \sin(3\beta) \, d\beta using the same method?
  3. How can you check the result of an integration using differentiation?
  4. What are the advantages of using integration by parts over other methods?
  5. Can integration by parts be extended to multiple variables? If so, how?

Tip: When integrating products of exponential and trigonometric functions, integration by parts is usually the best approach to consider.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Integration by Parts
Exponential Functions
Trigonometric Functions

Formulas

Integration by parts formula

Theorems

-

Suitable Grade Level

Advanced College Level