Math Problem Statement

Solve the following integrals: 1. ∫(x-2)^2 dx, 2. ∫(2x^2 + x + 1)/x^3 dx, 3. ∫(1 + √x)/x dx, 4. ∫3(x-2)^9 dx, 5. ∫x(5x^2 + 2)^9 dx

Solution

Let's go through each of the integrals one by one:

  1. (x2)2dx\int (x - 2)^2 \, dx
    Expand the square and integrate: (x2)2=x24x+4(x - 2)^2 = x^2 - 4x + 4 Now integrate term by term: (x24x+4)dx=x332x2+4x+C\int (x^2 - 4x + 4) \, dx = \frac{x^3}{3} - 2x^2 + 4x + C So, the solution is: x332x2+4x+C\frac{x^3}{3} - 2x^2 + 4x + C

  2. 2x2+x+1x3dx\int \frac{2x^2 + x + 1}{x^3} \, dx
    Rewrite the integrand as separate terms: 2x2+x+1x3=2x2x3+xx3+1x3=2x+1x2+1x3\frac{2x^2 + x + 1}{x^3} = \frac{2x^2}{x^3} + \frac{x}{x^3} + \frac{1}{x^3} = \frac{2}{x} + \frac{1}{x^2} + \frac{1}{x^3} Now integrate each term: 2xdx=2lnx,1x2dx=1x,1x3dx=12x2\int \frac{2}{x} \, dx = 2\ln|x|, \quad \int \frac{1}{x^2} \, dx = -\frac{1}{x}, \quad \int \frac{1}{x^3} \, dx = -\frac{1}{2x^2} So, the solution is: 2lnx1x12x2+C2\ln|x| - \frac{1}{x} - \frac{1}{2x^2} + C

  3. 1+xxdx\int \frac{1 + \sqrt{x}}{x} \, dx
    Rewrite the integrand: 1+xx=1x+xx=1x+x12\frac{1 + \sqrt{x}}{x} = \frac{1}{x} + \frac{\sqrt{x}}{x} = \frac{1}{x} + x^{-\frac{1}{2}} Now integrate each term: 1xdx=lnx,x12dx=2x\int \frac{1}{x} \, dx = \ln|x|, \quad \int x^{-\frac{1}{2}} \, dx = 2\sqrt{x} So, the solution is: lnx+2x+C\ln|x| + 2\sqrt{x} + C

  4. 3(x2)9dx\int 3(x - 2)^9 \, dx
    Use substitution or direct integration: Let u=x2u = x - 2, then du=dxdu = dx. The integral becomes: 3u9du=3u1010=3(x2)1010+C3\int u^9 \, du = 3 \cdot \frac{u^{10}}{10} = \frac{3(x - 2)^{10}}{10} + C

  5. x(5x2+2)9dx\int x(5x^2 + 2)^9 \, dx
    Use substitution: Let u=5x2+2u = 5x^2 + 2, then du=10xdxdu = 10x \, dx. The integral becomes: 110u9du=110u1010=(5x2+2)10100+C\frac{1}{10}\int u^9 \, du = \frac{1}{10} \cdot \frac{u^{10}}{10} = \frac{(5x^2 + 2)^{10}}{100} + C

Would you like more details on any of these integrals?

Here are 5 related questions to expand on these topics:

  1. How would you approach an integral involving trigonometric functions like sin2(x)dx\int \sin^2(x) \, dx?
  2. What is the method of substitution, and how is it used in integration?
  3. Can you apply integration by parts to solve any of the problems above?
  4. How do you evaluate definite integrals for these examples?
  5. How does the chain rule apply in differentiation, and how is it linked to the substitution method in integration?

Tip: Always simplify the integrand as much as possible before attempting to integrate, especially when dealing with powers or fractions.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Calculus
Integration
Substitution Method
Polynomial Integration

Formulas

∫ x^n dx = (x^(n+1))/(n+1) + C
∫ 1/x dx = ln|x| + C
Substitution: u = f(x), du = f'(x) dx

Theorems

Power Rule for Integration
Logarithmic Integration
Substitution Rule

Suitable Grade Level

Undergraduate level (Calculus I)