Math Problem Statement

\displaylinestan4(5x)\differentialDx\placeholder{\displaylines\int\tan^4\left(5x\right)\differentialD x\\ \placeholder{}}

Solution

To solve the integral tan4(5x)dx\int \tan^4(5x) \, dx, we can rewrite tan4(5x)\tan^4(5x) using trigonometric identities to simplify the expression.

Step 1: Express tan4(5x)\tan^4(5x) in terms of tan2(5x)\tan^2(5x)

We use the identity: tan2(θ)=sec2(θ)1\tan^2(\theta) = \sec^2(\theta) - 1 Thus, tan4(5x)\tan^4(5x) can be written as: tan4(5x)=(tan2(5x))2=(sec2(5x)1)2\tan^4(5x) = (\tan^2(5x))^2 = \left(\sec^2(5x) - 1\right)^2 Expanding the square: tan4(5x)=sec4(5x)2sec2(5x)+1\tan^4(5x) = \sec^4(5x) - 2\sec^2(5x) + 1

Step 2: Split the integral

Now, we can split the integral into three simpler integrals: tan4(5x)dx=(sec4(5x)2sec2(5x)+1)dx\int \tan^4(5x) \, dx = \int \left( \sec^4(5x) - 2\sec^2(5x) + 1 \right) dx This becomes: sec4(5x)dx2sec2(5x)dx+1dx\int \sec^4(5x) \, dx - 2\int \sec^2(5x) \, dx + \int 1 \, dx

Step 3: Solve each integral

  1. Integral of sec4(5x)\sec^4(5x):

    Use the reduction formula for powers of secant: sec4(5x)dx=13tan(5x)sec2(5x)+215tan3(5x)+C1\int \sec^4(5x) \, dx = \frac{1}{3} \tan(5x) \sec^2(5x) + \frac{2}{15} \tan^3(5x) + C_1

  2. Integral of sec2(5x)\sec^2(5x):

    This is a standard integral: sec2(5x)dx=15tan(5x)\int \sec^2(5x) \, dx = \frac{1}{5} \tan(5x)

  3. Integral of 1: 1dx=x\int 1 \, dx = x

Step 4: Combine the results

Putting everything together: tan4(5x)dx=13tan(5x)sec2(5x)+215tan3(5x)25tan(5x)+x+C\int \tan^4(5x) \, dx = \frac{1}{3} \tan(5x) \sec^2(5x) + \frac{2}{15} \tan^3(5x) - \frac{2}{5} \tan(5x) + x + C where CC is the constant of integration.


Would you like more details on any step?

Here are 5 related questions you might find interesting:

  1. How would you solve secn(x)dx\int \sec^n(x) \, dx for general nn?
  2. Can you derive the reduction formula for secn(x)\sec^n(x)?
  3. What is the integral of tann(x)\tan^n(x) for general nn?
  4. How do trigonometric identities simplify complex integrals?
  5. How would you approach the integral of cot4(x)\cot^4(x)?

Tip: Always look for identities to simplify trigonometric integrals before starting to integrate!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry
Integral Calculus
Trigonometric Identities

Formulas

tan²(θ) = sec²(θ) - 1
∫ sec⁴(θ) dθ = 1/3 tan(θ) sec²(θ) + 2/15 tan³(θ) + C
∫ sec²(θ) dθ = tan(θ)

Theorems

Trigonometric Integral Reduction Formula

Suitable Grade Level

Undergraduate Calculus