Math Problem Statement

explain how to solve this step by step

Explain how to solve the integral \(\int_{3}^{6} |3x - 15| \, dx\) step by step.

Solution

To solve the integral 363x15dx\int_{3}^{6} |3x - 15| \, dx, follow these steps:

Step-by-Step Solution:

  1. Understand the nature of the absolute value function:

    • The expression inside the absolute value, 3x153x - 15, can be positive or negative depending on the value of xx.
    • Solve 3x15=03x - 15 = 0 to find the critical point where the expression changes sign: 3x=15    x=5.3x = 15 \implies x = 5.
    • For x<5x < 5, 3x15<03x - 15 < 0, so 3x15=(3x15)|3x - 15| = -(3x - 15).
    • For x5x \geq 5, 3x1503x - 15 \geq 0, so 3x15=3x15|3x - 15| = 3x - 15.
  2. Split the integral at the critical point x=5x = 5: Since the integral spans the interval [3,6][3, 6], and the critical point x=5x = 5 lies in this interval, split the integral into two parts: 363x15dx=35(3x15)dx+56(3x15)dx.\int_{3}^{6} |3x - 15| \, dx = \int_{3}^{5} -(3x - 15) \, dx + \int_{5}^{6} (3x - 15) \, dx.

  3. Evaluate each integral:

    • For the first part: 35(3x15)dx=35(3x+15)dx.\int_{3}^{5} -(3x - 15) \, dx = \int_{3}^{5} (-3x + 15) \, dx. Compute the antiderivative: (3x+15)dx=3x22+15x.\int (-3x + 15) \, dx = -\frac{3x^2}{2} + 15x. Evaluate this from x=3x = 3 to x=5x = 5: [3x22+15x]35=(3(5)22+15(5))(3(3)22+15(3)).\left[ -\frac{3x^2}{2} + 15x \right]_{3}^{5} = \left(-\frac{3(5)^2}{2} + 15(5)\right) - \left(-\frac{3(3)^2}{2} + 15(3)\right). Simplify: =(752+75)(272+45)= \left(-\frac{75}{2} + 75\right) - \left(-\frac{27}{2} + 45\right) =752272=482=24.= \frac{75}{2} - \frac{27}{2} = \frac{48}{2} = 24.

    • For the second part: 56(3x15)dx.\int_{5}^{6} (3x - 15) \, dx. Compute the antiderivative: (3x15)dx=3x2215x.\int (3x - 15) \, dx = \frac{3x^2}{2} - 15x. Evaluate this from x=5x = 5 to x=6x = 6: [3x2215x]56=(3(6)2215(6))(3(5)2215(5)).\left[ \frac{3x^2}{2} - 15x \right]_{5}^{6} = \left(\frac{3(6)^2}{2} - 15(6)\right) - \left(\frac{3(5)^2}{2} - 15(5)\right). Simplify: =(108290)(75275)= \left(\frac{108}{2} - 90\right) - \left(\frac{75}{2} - 75\right) =5490+75752= 54 - 90 + 75 - \frac{75}{2} [ = \frac{27 /

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Integration
Absolute Value Function
Piecewise Functions

Formulas

Antiderivative of a polynomial \(\int ax^n dx = \frac{ax^{n+1}}{n+1}\)

Theorems

Piecewise integration based on critical points of absolute value functions

Suitable Grade Level

Grades 11-12