Math Problem Statement

Solve the following problem: ∫1/sin(2x)^3

Solution

To solve the integral 1sin3(2x)dx\int \frac{1}{\sin^3(2x)} \, dx, we'll use a trigonometric identity and substitution.

Step 1: Use Trigonometric Identity

We can express sin3(2x)\sin^3(2x) as sin(2x)\sin(2x) times sin2(2x)\sin^2(2x). Using the identity sin2(2x)=1cos2(2x)\sin^2(2x) = 1 - \cos^2(2x), we can rewrite the integral as:

1sin3(2x)dx=1sin(2x)sin2(2x)dx=1sin(2x)(1cos2(2x))dx\int \frac{1}{\sin^3(2x)} \, dx = \int \frac{1}{\sin(2x) \cdot \sin^2(2x)} \, dx = \int \frac{1}{\sin(2x) \cdot (1 - \cos^2(2x))} \, dx

Step 2: Use the Substitution Method

Let u=cos(2x)u = \cos(2x), so that du=2sin(2x)dxdu = -2\sin(2x) \, dx, or du2=sin(2x)dx\frac{du}{-2} = \sin(2x) \, dx.

Substituting into the integral:

1sin(2x)(1u2)dx=1211u2du\int \frac{1}{\sin(2x) \cdot (1 - u^2)} \, dx = -\frac{1}{2} \int \frac{1}{1 - u^2} \, du

Step 3: Solve the Integral Using Partial Fraction Decomposition

The integral 11u2du\int \frac{1}{1 - u^2} \, du can be solved by recognizing it as a standard form:

11u2du=12ln1+u1u+C\int \frac{1}{1 - u^2} \, du = \frac{1}{2} \ln \left|\frac{1+u}{1-u}\right| + C

Step 4: Substitute Back

Substitute u=cos(2x)u = \cos(2x) back into the expression:

1212ln1+cos(2x)1cos(2x)+C=14ln1+cos(2x)1cos(2x)+C-\frac{1}{2} \cdot \frac{1}{2} \ln \left|\frac{1+\cos(2x)}{1-\cos(2x)}\right| + C = -\frac{1}{4} \ln \left|\frac{1+\cos(2x)}{1-\cos(2x)}\right| + C

Step 5: Simplify the Expression

Using the identity 1+cos(2x)1cos(2x)=cot2(x)\frac{1+\cos(2x)}{1-\cos(2x)} = \cot^2(x), the integral simplifies to:

14ln(cot2(x))+C=12lncot(x)+C-\frac{1}{4} \ln(\cot^2(x)) + C = -\frac{1}{2} \ln|\cot(x)| + C

Thus, the final answer is:

1sin3(2x)dx=12lncot(x)+C\int \frac{1}{\sin^3(2x)} \, dx = -\frac{1}{2} \ln|\cot(x)| + C

Summary

The integral 1sin3(2x)dx\int \frac{1}{\sin^3(2x)} \, dx evaluates to 12lncot(x)+C-\frac{1}{2} \ln|\cot(x)| + C, where CC is the constant of integration.

Would you like a detailed explanation of any specific step? Here are some related problems you might want to try:

  1. Solve 1sin2(x)dx\int \frac{1}{\sin^2(x)} \, dx.
  2. Evaluate 1sin4(x)dx\int \frac{1}{\sin^4(x)} \, dx.
  3. Solve 1cos3(x)dx\int \frac{1}{\cos^3(x)} \, dx.
  4. Evaluate sin(x)cos2(x)dx\int \frac{\sin(x)}{\cos^2(x)} \, dx.
  5. Solve 1tan(x)dx\int \frac{1}{\tan(x)} \, dx.

Tip: When dealing with integrals of trigonometric functions, try to simplify using identities and consider substitution methods.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Calculus
Trigonometric Integrals
Substitution Method
Partial Fraction Decomposition

Formulas

sin^2(2x) = 1 - cos^2(2x)
∫1/(1 - u^2) du = (1/2)ln|((1+u)/(1-u))| + C
∫1/sin^n(x) dx

Theorems

Trigonometric Identities
Integral by Substitution
Partial Fractions Decomposition

Suitable Grade Level

Grades 11-12, College