Math Problem Statement

The following is the group table of a group whose elements are fe;x1;x2; : : : ;x7g, where e is the identity: e x1 x2 x3 x4 x5 x6 x7 e e x1 x2 x3 x4 x5 x6 x7 x1 x1 x2 x3 x4 x5 x6 x7 e x2 x2 x3 x4 x5 x6 x7 e x1 x3 x3 x4 x5 x6 x7 e x1 x2 x4 x4 x5 x6 x7 e x1 x2 x3 x5 x5 x6 x7 e x1 x2 x3 x4 x6 x6 x7 e x1 x2 x3 x4 x5 x7 x7 e x1 x2 x3 x4 x5 x6 (a) Express each of the following elements in terms of one element from fe;x1;x2; : : : ;x7g. (x5)2 (x4)3 (x5)(x4) (x4)(x5) (x5)􀀀1 (b) Find all elements x such that x3 = e. Enter N if no such element exists. (c) Find all elements x such that x2 = x5. Enter N if no such element exists. (d) Find all elements x such that x3 = x4. Enter N if no such element exists.

Solution

To solve the given problem based on the group table, let us carefully analyze and compute the results.

(a) Express the elements in terms of {e,x1,x2,,x7}\{e, x_1, x_2, \dots, x_7\}:

  1. (x5)2(x_5)^2:
    To find (x5)2=x5x5(x_5)^2 = x_5 \cdot x_5, locate x5x_5 in the row of x5x_5:

    • From the table: x5x5=x7x_5 \cdot x_5 = x_7.
      So, (x5)2=x7(x_5)^2 = x_7.
  2. (x4)3(x_4)^3:
    To find (x4)3=x4x4x4(x_4)^3 = x_4 \cdot x_4 \cdot x_4:

    • From the table: x4x4=x6x_4 \cdot x_4 = x_6.
    • Then, x6x4=ex_6 \cdot x_4 = e.
      So, (x4)3=e(x_4)^3 = e.
  3. (x5)(x4)(x_5)(x_4):
    To find x5x4x_5 \cdot x_4:

    • From the table: x5x4=x3x_5 \cdot x_4 = x_3.
      So, (x5)(x4)=x3(x_5)(x_4) = x_3.
  4. (x4)(x5)(x_4)(x_5):
    To find x4x5x_4 \cdot x_5:

    • From the table: x4x5=x2x_4 \cdot x_5 = x_2.
      So, (x4)(x5)=x2(x_4)(x_5) = x_2.
  5. (x5)1(x_5)^{-1}:
    To find the inverse of x5x_5, locate the element in the row of x5x_5 that gives ee when multiplied by x5x_5:

    • From the table: x5x7=ex_5 \cdot x_7 = e.
      So, (x5)1=x7(x_5)^{-1} = x_7.

(b) Find all elements xx such that x3=ex^3 = e:

For x3=ex^3 = e, compute cubes of all elements xx in the group:

  • e3=ee^3 = e.
  • (x1)3=x1x2x3=e(x_1)^3 = x_1 \cdot x_2 \cdot x_3 = e (verify from the table).
  • (x2)3=x2x3x4=e(x_2)^3 = x_2 \cdot x_3 \cdot x_4 = e.
  • (x3)3=x3x4x5=e(x_3)^3 = x_3 \cdot x_4 \cdot x_5 = e.
  • (x4)3=x4x4x4=e(x_4)^3 = x_4 \cdot x_4 \cdot x_4 = e (calculated above).
  • (x5)3=x5x6x7=e(x_5)^3 = x_5 \cdot x_6 \cdot x_7 = e.
  • (x6)3=x6x7e=e(x_6)^3 = x_6 \cdot x_7 \cdot e = e.
  • (x7)3=x7ex1=e(x_7)^3 = x_7 \cdot e \cdot x_1 = e.

All elements satisfy x3=ex^3 = e: {e,x1,x2,x3,x4,x5,x6,x7}\{e, x_1, x_2, x_3, x_4, x_5, x_6, x_7\}.


(c) Find all elements xx such that x2=x5x^2 = x_5:

For x2=x5x^2 = x_5, compute squares of all elements xx:

  • e2=ex5e^2 = e \neq x_5.
  • (x1)2=x2x5(x_1)^2 = x_2 \neq x_5.
  • (x2)2=x3x5(x_2)^2 = x_3 \neq x_5.
  • (x3)2=x4x5(x_3)^2 = x_4 \neq x_5.
  • (x4)2=x6x5(x_4)^2 = x_6 \neq x_5.
  • (x5)2=x7x5(x_5)^2 = x_7 \neq x_5.
  • (x6)2=ex5(x_6)^2 = e \neq x_5.
  • (x7)2=x1x5(x_7)^2 = x_1 \neq x_5.

No elements satisfy x2=x5x^2 = x_5: NN.


(d) Find all elements xx such that x3=x4x^3 = x_4:

For x3=x4x^3 = x_4, compute cubes of all elements xx:

  • e3=ex4e^3 = e \neq x_4.
  • (x1)3=ex4(x_1)^3 = e \neq x_4.
  • (x2)3=ex4(x_2)^3 = e \neq x_4.
  • (x3)3=ex4(x_3)^3 = e \neq x_4.
  • (x4)3=ex4(x_4)^3 = e \neq x_4.
  • (x5)3=ex4(x_5)^3 = e \neq x_4.
  • (x6)3=ex4(x_6)^3 = e \neq x_4.
  • (x7)3=ex4(x_7)^3 = e \neq x_4.

No elements satisfy x3=x4x^3 = x_4: NN.


Final Answers:

(a)

  1. (x5)2=x7(x_5)^2 = x_7.
  2. (x4)3=e(x_4)^3 = e.
  3. (x5)(x4)=x3(x_5)(x_4) = x_3.
  4. (x4)(x5)=x2(x_4)(x_5) = x_2.
  5. (x5)1=x7(x_5)^{-1} = x_7.

(b) {e,x1,x2,x3,x4,x5,x6,x7}\{e, x_1, x_2, x_3, x_4, x_5, x_6, x_7\}.
(c) NN.
(d) NN.

Would you like me to verify any calculations or provide further clarification?


  1. What is the significance of xn=ex^n = e in a group structure?
  2. How do you verify the inverse of an element in a group?
  3. Can there be a group where no element satisfies x3=ex^3 = e?
  4. Why is the identity element important when interpreting group tables?
  5. How does this group table compare to a cyclic group structure?

Tip: Always check the closure property and inverses to ensure a valid group operation.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Group Theory
Algebraic Structures
Group Operations
Element Inverses

Formulas

Group operation table rules: a*b = element from the group
Inverse: x * x^(-1) = e
Powers in groups: x^n = x * x * ... * x (n times)

Theorems

Group Closure Property
Associative Property of Groups
Existence of Identity and Inverses in Groups

Suitable Grade Level

Undergraduate (Abstract Algebra)