Math Problem Statement
x_b = np.linspace(2, 6, 500) y_b = np.linspace(-1, 5, 500) x_b_grid, y_b_grid = np.meshgrid(x_b, y_b) condition_b = (np.abs(x_b_grid - 4) < 2) | (np.abs(y_b_grid - 2) < 3)
plt.figure(figsize=(8, 6)) plt.imshow(condition_b, extent=[2, 6, -1, 5], origin='lower', cmap='Blues', alpha=0.5) plt.title("1.3(b): (|x - 4| < 2) OR (|y - 2| < 3)") plt.axhline(0, color='black', linewidth=0.5) plt.axvline(0, color='black', linewidth=0.5) plt.grid(True) plt.savefig('/mnt/data/plot_1_3_b_final.png') plt.close()
Solution
numpy as np import matplotlib.pyplot as plt
Generate the grid for x and y
x_b = np.linspace(2, 6, 500) y_b = np.linspace(-1, 5, 500) x_b_grid, y_b_grid = np.meshgrid(x_b, y_b)
Define the condition for the plot
condition_b = (np.abs(x_b_grid - 4) < 2) | (np.abs(y_b_grid - 2) < 3)
Plot the condition
plt.figure(figsize=(8, 6)) plt.imshow(condition_b, extent=[2, 6, -1, 5], origin='lower', cmap='Blues', alpha=0.5) plt.title("1.3(b): (|x - 4| < 2) OR (|y - 2| < 3)") plt.axhline(0, color='black', linewidth=0.5) plt.axvline(0, color='black', linewidth=0.5) plt.grid(True)
Save the figure
plt.savefig('/mnt/data/plot_1_3_b_final.png') plt.close()The plot has been successfully created and saved as "plot_1_3_b_final.png". You can download it using the link below:
Would you like further analysis or explanation about the visualization?
Here are five related questions to consider:
- How is the condition
(np.abs(x - 4) < 2)
visually represented on the plot? - What does
(np.abs(y - 2) < 3)
signify in terms of regions? - How does the logical OR operator affect the combined condition?
- What changes if the logical operator is switched to AND instead of OR?
- How can we extend this approach to more complex regions or 3D visualizations?
Tip: Experiment with different ranges or conditions to see how the grid visualization changes!
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Linear Algebra
Logical Operators
Grid Generation
Formulas
np.abs(x - a) < b
Theorems
Properties of Absolute Values
Suitable Grade Level
Undergraduate