Math Problem Statement

ABCD is a parallelogram. AB = 3√2, AD = 8, ∠BAD = 45◦ , M is a point on CD, CM : MD = 1 : 2. N is a point on AD, AN : ND = 3 : 1. Find: a) the length of AM; b) the length of BN; c) the acute angle between AM and BN

Solution

Given the parallelogram ABCDABCD with the following properties:

  • AB=32AB = 3\sqrt{2}
  • AD=8AD = 8
  • BAD=45\angle BAD = 45^\circ
  • Point MM divides CDCD in the ratio CM:MD=1:2CM : MD = 1 : 2
  • Point NN divides ADAD in the ratio AN:ND=3:1AN : ND = 3 : 1

Let's find:

a) The Length of AMAM

To find AMAM, we first need to determine the coordinates of points CC and DD. Since ABCDABCD is a parallelogram, we can set AA at (0,0)(0, 0), BB at (32,0)(3\sqrt{2}, 0), DD at (0,8)(0, 8), and CC at (32,8)(3\sqrt{2}, 8).

Coordinates of MM:

Point MM divides CDCD in the ratio 1:21:2, so using the section formula, the coordinates of MM are:

M=(232+1321+2,28+181+2)=(22,243)=(22,8)M = \left(\frac{2 \cdot 3\sqrt{2} + 1 \cdot 3\sqrt{2}}{1+2}, \frac{2 \cdot 8 + 1 \cdot 8}{1+2}\right) = \left(2\sqrt{2}, \frac{24}{3}\right) = (2\sqrt{2}, 8)

Length of AMAM:

AM=(220)2+(80)2=8+64=72=62AM = \sqrt{(2\sqrt{2} - 0)^2 + (8 - 0)^2} = \sqrt{8 + 64} = \sqrt{72} = 6\sqrt{2}

b) The Length of BNBN

Coordinates of NN:

Point NN divides ADAD in the ratio 3:13:1, so using the section formula, the coordinates of NN are:

N=(30+103+1,38+103+1)=(0,6)N = \left(\frac{3 \cdot 0 + 1 \cdot 0}{3+1}, \frac{3 \cdot 8 + 1 \cdot 0}{3+1}\right) = (0, 6)

Length of BNBN:

BN=(320)2+(06)2=18+36=54=36BN = \sqrt{(3\sqrt{2} - 0)^2 + (0 - 6)^2} = \sqrt{18 + 36} = \sqrt{54} = 3\sqrt{6}

c) The Acute Angle Between AMAM and BNBN

To find the acute angle between vectors AM\overrightarrow{AM} and BN\overrightarrow{BN}, we use the dot product formula:

cosθ=AMBNAM×BN\cos \theta = \frac{\overrightarrow{AM} \cdot \overrightarrow{BN}}{|\overrightarrow{AM}| \times |\overrightarrow{BN}|}

Vectors:

AM=(22,8)andBN=(32,6)\overrightarrow{AM} = (2\sqrt{2}, 8) \quad \text{and} \quad \overrightarrow{BN} = (-3\sqrt{2}, -6)

Dot Product:

AMBN=(22)(32)+(8)(6)=1248=60\overrightarrow{AM} \cdot \overrightarrow{BN} = (2\sqrt{2})(-3\sqrt{2}) + (8)(-6) = -12 - 48 = -60

Magnitude of Vectors:

AM=62,BN=36|\overrightarrow{AM}| = 6\sqrt{2}, \quad |\overrightarrow{BN}| = 3\sqrt{6}

Cosine of the Angle:

cosθ=60(62)(36)=601812=60363=533=539\cos \theta = \frac{-60}{(6\sqrt{2})(3\sqrt{6})} = \frac{-60}{18\sqrt{12}} = \frac{-60}{36\sqrt{3}} = -\frac{5}{3\sqrt{3}} = -\frac{5\sqrt{3}}{9}

Angle θ\theta:

θ=cos1(539)\theta = \cos^{-1}\left(-\frac{5\sqrt{3}}{9}\right)

Since we need the acute angle, we consider the positive value:

θ=180cos1(539)\theta = 180^\circ - \cos^{-1}\left(\frac{5\sqrt{3}}{9}\right)

Would you like further details or calculations? Here are related questions you might find helpful:

  1. How do you derive the section formula used here?
  2. What is the geometric interpretation of the dot product of two vectors?
  3. How would the problem change if BAD\angle BAD were different?
  4. What is the significance of dividing a line segment in a given ratio?
  5. How would you find coordinates in 3D using similar methods?

Tip: When working with ratios and coordinates, always use the section formula for accurate results!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Geometry
Coordinate Geometry
Vectors
Trigonometry
Parallelograms

Formulas

Distance formula: √((x2 - x1)² + (y2 - y1)²)
Section formula: ((mx2 + nx1) / (m+n), (my2 + ny1) / (m+n))
Dot product formula: A · B = |A| |B| cosθ

Theorems

Properties of Parallelograms
Section Formula Theorem
Dot Product and Angle Theorem

Suitable Grade Level

Grades 10-12