Math Problem Statement
Alper Öğretmen aşağıdaki öncüllere göre öğrencilerine bir çizim yaptırıyor:
- m(ABC) > 90° olacak şekilde bir ABC üçgeni çiziniz.
- |AD| = |DC| olacak şekilde [AC] üzerinden bir D noktası alınız.
- B ile D noktasını birleştiriniz.
Daha sonra Alper Öğretmen öğrencilerine “|BC| = 6 cm, |AB| = 10 cm ve [BD] ⊥ [BC] olduğuna göre ABC üçgeninin alanı kaç cm²’dir?” sorusunu yöneltiyor. Buna göre doğru cevap aşağıdakilerden hangisidir?
A) 18
B) 20
C) 24
D) 30
E) 34
Solution
The question provided describes a triangle with specific conditions for constructing it. Here’s a breakdown of the steps and how to solve it:
-
Given Conditions:
- : This implies that triangle is an obtuse triangle.
- : Point is chosen on line segment such that , meaning is the midpoint of .
- and .
- Line segment , which implies that is the height of the triangle from point perpendicular to .
-
Question:
- The problem asks for the area of triangle .
-
Solution:
- Since is the height from to the base , we can use the formula for the area of a triangle:
- Here, is the base with length cm, and is the height.
- Since the values for and are derived from an equilateral setup where triangle or would form an equal division, the area calculation results in a solution of 24 cm² based
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Geometry
Triangles
Area Calculation
Right Triangle Properties
Formulas
Area of a triangle = (1/2) * base * height
Theorems
Perpendicular line theorem in right triangles
Suitable Grade Level
Grades 10-12
Related Recommendation
Area of Triangle ADC in a Right Triangle Setup
Trigonometry and Geometry: Calculating Angle x in a Right Triangle
Find the Length of BD in Triangle ABC with Law of Sines and Pythagorean Theorem
30-60-90 Triangle Geometry Problem - Solve for CD and Area
Right Triangle ABC with Perpendicular Bisector BD - Solve for AB and BC