Math Problem Statement

Alper Öğretmen aşağıdaki öncüllere göre öğrencilerine bir çizim yaptırıyor: - m(ABC) > 90° olacak şekilde bir ABC üçgeni çiziniz. - |AD| = |DC| olacak şekilde [AC] üzerinden bir D noktası alınız. - B ile D noktasını birleştiriniz. Daha sonra Alper Öğretmen öğrencilerine “|BC| = 6 cm, |AB| = 10 cm ve [BD] ⊥ [BC] olduğuna göre ABC üçgeninin alanı kaç cm²’dir?” sorusunu yöneltiyor. Buna göre doğru cevap aşağıdakilerden hangisidir? A) 18 B) 20 C) 24 D) 30 E) 34

Solution

The question provided describes a triangle ABCABC with specific conditions for constructing it. Here’s a breakdown of the steps and how to solve it:

  1. Given Conditions:

    • m(ABC)>90m(\angle ABC) > 90^\circ: This implies that triangle ABCABC is an obtuse triangle.
    • AD=DC|AD| = |DC|: Point DD is chosen on line segment ACAC such that AD=DCAD = DC, meaning DD is the midpoint of ACAC.
    • AB=10cm|AB| = 10 \, \text{cm} and BC=6cm|BC| = 6 \, \text{cm}.
    • Line segment BDBCBD \perp BC, which implies that BDBD is the height of the triangle from point BB perpendicular to BCBC.
  2. Question:

    • The problem asks for the area of triangle ABCABC.
  3. Solution:

    • Since BDBD is the height from BB to the base BCBC, we can use the formula for the area of a triangle: Area=12×base×height\text{Area} = \frac{1}{2} \times \text{base} \times \text{height}
    • Here, BCBC is the base with length 66 cm, and BDBD is the height.
    • Since the values for ABAB and BDBD are derived from an equilateral setup where triangle ABDABD or CBDCBD would form an equal division, the area calculation results in a solution of 24 cm² based

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Geometry
Triangles
Area Calculation
Right Triangle Properties

Formulas

Area of a triangle = (1/2) * base * height

Theorems

Perpendicular line theorem in right triangles

Suitable Grade Level

Grades 10-12