Math Problem Statement
tolong jawab diketahui ditanya dijawab yaaa
Solution
Sure, I’ll help solve the problems from the uploaded images using the structure "diketahui" (given), "ditanya" (asked), and "jawab" (solution). Let's go through each visible question.
Image 1
Problem 8:
- Diketahui:
- Sudut pusat lingkaran =
- Jari-jari lingkaran = 21 cm
- Ditanya: Panjang busur lingkaran
- Jawab:
- Rumus panjang busur lingkaran:
- Substitute values:
- Simplify:
- Jawaban: E. 22 cm
Problem 9:
- Diketahui:
- Jari-jari lingkaran = 3 m
- Ditanya: Panjang garis putih yang membentuk lingkaran (keliling)
- Jawab:
- Rumus keliling lingkaran:
- Substitute values:
- Jawaban: D. 18.8 m
Problem 10:
- Diketahui:
- Sudut pusat
- Ditanya: Nilai
- Jawab:
- Karena sudut pusat adalah , maka sudut keliling yang bersesuaian () adalah setengah dari sudut pusat.
- Jawaban: E. 60°
Image 2
Problem 4:
- Diketahui:
- Jari-jari lingkaran = 21 cm
- Sudut pusat
- Ditanya: Panjang busur
- Jawab:
- Rumus panjang busur:
- Substitute values:
- Simplify:
- Jawaban: B. 44 cm
Problem 5:
- Diketahui:
- Jari-jari lingkaran cm
- Panjang busur cm
- Ditanya: Besar sudut
- Jawab:
- Rumus panjang busur lingkaran:
- Substitute values and solve for :
- Simplify:
- Jawaban: D. 80°
If you need further assistance or if you have questions about other specific problems on the page, please let me know. Here are some related questions for practice:
- What would be the length of an arc if the radius is doubled but the central angle remains the same?
- How do you calculate the circumference of a circle with a radius of 10 cm?
- If the radius is halved, how does the length of the arc change for a fixed angle?
- What formula relates the area of a sector to its central angle?
- How would you find the angle if only the arc length and radius are given?
Tip: Remember, when calculating the length of an arc, it’s helpful to convert the angle to radians for simpler calculations in more advanced math contexts.
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Geometry
Circle
Arc Length
Circumference
Angle Measures
Formulas
Arc length formula: L = (θ / 360°) * 2πr
Circumference formula: C = 2πr
Theorems
Central Angle Theorem: the measure of an inscribed angle is half the measure of its intercepted arc or central angle.
Suitable Grade Level
Grade 8