Math Problem Statement

needs to be in decimal form

Express the general solution of \( A\mathbf{x} = \mathbf{b} \) where \( A = \begin{bmatrix} 2 & -2 \\ -6 & 6 \end{bmatrix} \) and \( \mathbf{b} = \begin{bmatrix} -2 \\ 6 \end{bmatrix} \) as \( \mathbf{x} = \mathbf{x}_r + c \mathbf{x}_n \), where \( \mathbf{x}_r \) is the row space solution and \( \mathbf{x}_n \) is a basis for \( \text{null}(A) \).

Solution

The problem asks to express the general solution of the equation Ax=bA \mathbf{x} = \mathbf{b}, where A=[2266]A = \begin{bmatrix} 2 & -2 \\ -6 & 6 \end{bmatrix} and b=[26]\mathbf{b} = \begin{bmatrix} -2 \\ 6 \end{bmatrix}, in the form:

x=xr+cxn\mathbf{x} = \mathbf{x}_r + c \mathbf{x}_n

where:

  • xr\mathbf{x}_r is the particular solution (row space solution),
  • xn\mathbf{x}_n is a basis for the null space of AA,
  • and cc is a scalar parameter.

Step 1: Solve for xr\mathbf{x}_r

First, solve the system Axr=bA \mathbf{x}_r = \mathbf{b} for xr\mathbf{x}_r.

A=[2266],b=[26]A = \begin{bmatrix} 2 & -2 \\ -6 & 6 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} -2 \\ 6 \end{bmatrix}

We can rewrite the system of equations as:

2x12x2=2(1)2x_1 - 2x_2 = -2 \quad \text{(1)} 6x1+6x2=6(2)-6x_1 + 6x_2 = 6 \quad \text{(2)}

Both equations are equivalent, so solve just one of them. From equation (1):

2x12x2=2x1x2=1x1=x212x_1 - 2x_2 = -2 \quad \Rightarrow \quad x_1 - x_2 = -1 \quad \Rightarrow \quad x_1 = x_2 - 1

Let x2=tx_2 = t, where tt is a free variable. Then:

x1=t1x_1 = t - 1

Thus, the row space solution is:

xr=[10]\mathbf{x}_r = \begin{bmatrix} -1 \\ 0 \end{bmatrix}

Step 2: Find the null space solution

Next, we find the null space of AA, i.e., we solve Axn=0A \mathbf{x}_n = 0. This gives the system of equations:

2x12x2=0(3)2x_1 - 2x_2 = 0 \quad \text{(3)} 6x1+6x2=0(4)-6x_1 + 6x_2 = 0 \quad \text{(4)}

Again, both equations are equivalent. From equation (3):

2x12x2=0x1=x22x_1 - 2x_2 = 0 \quad \Rightarrow \quad x_1 = x_2

So the null space solution is:

xn=[11]\mathbf{x}_n = \begin{bmatrix} 1 \\ 1 \end{bmatrix}

Step 3: Express the general solution

The general solution is given by:

x=xr+cxn\mathbf{x} = \mathbf{x}_r + c \mathbf{x}_n

Substituting the values for xr\mathbf{x}_r and xn\mathbf{x}_n:

x=[10]+c[11]\mathbf{x} = \begin{bmatrix} -1 \\ 0 \end{bmatrix} + c \begin{bmatrix} 1 \\ 1 \end{bmatrix}

Finally, this simplifies to:

x=[1+cc]\mathbf{x} = \begin{bmatrix} -1 + c \\ c \end{bmatrix}

This is the general solution.

Would you like more details or further clarifications? Here are some related questions:

  1. What is the row space of a matrix?
  2. How is the null space of a matrix determined?
  3. Why is one equation from the system of equations sufficient to solve this problem?
  4. What are the implications of free variables in solving linear systems?
  5. How can the method used here apply to other systems of linear equations?

Tip: When dealing with systems of linear equations, always check if the equations are dependent. This reduces the number of equations you need to solve.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Linear Algebra
Matrix Equations
Null Space
Row Space

Formulas

General Solution: \( \mathbf{x} = \mathbf{x}_r + c \mathbf{x}_n \)

Theorems

Matrix Null Space
Row Space Basis

Suitable Grade Level

Grades 10-12