Math Problem Statement

What is the general solution of x' = Ax where A = [1 -2 2 1] (2x2)?

Solution

To solve x=Axx' = Ax, where A=[1221]A = \begin{bmatrix} 1 & -2 \\ 2 & 1 \end{bmatrix}, we proceed as follows:


Step 1: Find the Eigenvalues of AA

The eigenvalues are solutions to the characteristic equation:

det(AλI)=0\det(A - \lambda I) = 0

For AλIA - \lambda I:

AλI=[1λ221λ]A - \lambda I = \begin{bmatrix} 1 - \lambda & -2 \\ 2 & 1 - \lambda \end{bmatrix}

The determinant is:

det(AλI)=(1λ)(1λ)(2)(2)\det(A - \lambda I) = (1 - \lambda)(1 - \lambda) - (-2)(2) det(AλI)=(1λ)24\det(A - \lambda I) = (1 - \lambda)^2 - 4 det(AλI)=λ22λ3\det(A - \lambda I) = \lambda^2 - 2\lambda - 3

Solve for λ\lambda by factoring:

λ22λ3=(λ3)(λ+1)=0\lambda^2 - 2\lambda - 3 = (\lambda - 3)(\lambda + 1) = 0

Thus, the eigenvalues are:

λ1=3,λ2=1\lambda_1 = 3, \quad \lambda_2 = -1


Step 2: Find the Eigenvectors

For each eigenvalue, find the corresponding eigenvector vv such that (AλI)v=0(A - \lambda I)v = 0.

For λ1=3\lambda_1 = 3:

A3I=[132213]=[2222]A - 3I = \begin{bmatrix} 1 - 3 & -2 \\ 2 & 1 - 3 \end{bmatrix} = \begin{bmatrix} -2 & -2 \\ 2 & -2 \end{bmatrix}

Solve (A3I)v=0(A - 3I)v = 0:

[2222][v1v2]=[00]\begin{bmatrix} -2 & -2 \\ 2 & -2 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}

This gives 2v12v2=0-2v_1 - 2v_2 = 0, or v1+v2=0v_1 + v_2 = 0. Choose v1=1v_1 = 1, then v2=1v_2 = -1.

Thus, an eigenvector for λ1=3\lambda_1 = 3 is:

v1=[11]v_1 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}

For λ2=1\lambda_2 = -1:

A+I=[1+1221+1]=[2222]A + I = \begin{bmatrix} 1 + 1 & -2 \\ 2 & 1 + 1 \end{bmatrix} = \begin{bmatrix} 2 & -2 \\ 2 & 2 \end{bmatrix}

Solve (A+I)v=0(A + I)v = 0:

[2222][v1v2]=[00]\begin{bmatrix} 2 & -2 \\ 2 & 2 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}

This gives 2v12v2=02v_1 - 2v_2 = 0, or v1=v2v_1 = v_2. Choose v1=1v_1 = 1, then v2=1v_2 = 1.

Thus, an eigenvector for λ2=1\lambda_2 = -1 is:

v2=[11]v_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}


Step 3: Write the General Solution

The general solution is:

x(t)=c1eλ1tv1+c2eλ2tv2x(t) = c_1 e^{\lambda_1 t} v_1 + c_2 e^{\lambda_2 t} v_2

Substitute the eigenvalues and eigenvectors:

x(t)=c1e3t[11]+c2et[11]x(t) = c_1 e^{3t} \begin{bmatrix} 1 \\ -1 \end{bmatrix} + c_2 e^{-t} \begin{bmatrix} 1 \\ 1 \end{bmatrix}

Simplify:

x(t)=c1[e3te3t]+c2[etet]x(t) = c_1 \begin{bmatrix} e^{3t} \\ -e^{3t} \end{bmatrix} + c_2 \begin{bmatrix} e^{-t} \\ e^{-t} \end{bmatrix}

Or equivalently:

x(t)=[c1e3t+c2etc1e3t+c2et]x(t) = \begin{bmatrix} c_1 e^{3t} + c_2 e^{-t} \\ -c_1 e^{3t} + c_2 e^{-t} \end{bmatrix}


This is the general solution to x=Axx' = Ax.


Questions to Expand Understanding:

  1. How does the presence of distinct eigenvalues simplify the solution process?
  2. What happens if the eigenvalues are complex instead of real?
  3. How would repeated eigenvalues change the solution structure?
  4. Can we write this solution using matrix exponentials?
  5. How do initial conditions affect the values of c1c_1 and c2c_2?

Tip:

Always verify eigenvector calculations by plugging them back into (AλI)v=0(A - \lambda I)v = 0 to ensure correctness.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Linear Differential Equations
Eigenvalues and Eigenvectors
Matrix Operations

Formulas

x' = Ax
det(A - λI) = 0
x(t) = c_1 e^(λ_1 t) v_1 + c_2 e^(λ_2 t) v_2

Theorems

Eigenvalue decomposition
Characteristic equation

Suitable Grade Level

Grades 11-12 (Advanced)