Math Problem Statement

let F(x)=2x-5
g(x)=7-3x
h(x)=4-3x+x^2 f(-5), g(2), h(-3), g(h(-3)), f(f(-2)), f(a+b), g(g(x))

Solution

Let's evaluate each function step by step based on the given information:

Given:

  • F(x)=2x5F(x) = 2x - 5
  • g(x)=73xg(x) = 7 - 3x
  • h(x)=43x+x2h(x) = 4 - 3x + x^2

1. f(5)f(-5)

Substitute x=5x = -5 into F(x)=2x5F(x) = 2x - 5: f(5)=2(5)5=105=15f(-5) = 2(-5) - 5 = -10 - 5 = -15

2. g(2)g(2)

Substitute x=2x = 2 into g(x)=73xg(x) = 7 - 3x: g(2)=73(2)=76=1g(2) = 7 - 3(2) = 7 - 6 = 1

3. h(3)h(-3)

Substitute x=3x = -3 into h(x)=43x+x2h(x) = 4 - 3x + x^2: h(3)=43(3)+(3)2=4+9+9=22h(-3) = 4 - 3(-3) + (-3)^2 = 4 + 9 + 9 = 22

4. g(h(3))g(h(-3))

First, find h(3)h(-3) (already calculated above): h(3)=22h(-3) = 22 Now substitute x=22x = 22 into g(x)=73xg(x) = 7 - 3x: g(22)=73(22)=766=59g(22) = 7 - 3(22) = 7 - 66 = -59

5. f(f(2))f(f(-2))

First, find f(2)f(-2): f(2)=2(2)5=45=9f(-2) = 2(-2) - 5 = -4 - 5 = -9 Now substitute x=9x = -9 into F(x)=2x5F(x) = 2x - 5: f(f(2))=f(9)=2(9)5=185=23f(f(-2)) = f(-9) = 2(-9) - 5 = -18 - 5 = -23

6. f(a+b)f(a+b)

Substitute x=a+bx = a + b into F(x)=2x5F(x) = 2x - 5: f(a+b)=2(a+b)5=2a+2b5f(a+b) = 2(a + b) - 5 = 2a + 2b - 5

7. g(g(x))g(g(x))

First, find g(x)=73xg(x) = 7 - 3x. Now substitute g(x)g(x) into gg again: g(g(x))=g(73x)=73(73x)=721+9x=14+9xg(g(x)) = g(7 - 3x) = 7 - 3(7 - 3x) = 7 - 21 + 9x = -14 + 9x


Final answers:

  1. f(5)=15f(-5) = -15
  2. g(2)=1g(2) = 1
  3. h(3)=22h(-3) = 22
  4. g(h(3))=59g(h(-3)) = -59
  5. f(f(2))=23f(f(-2)) = -23
  6. f(a+b)=2a+2b5f(a+b) = 2a + 2b - 5
  7. g(g(x))=14+9xg(g(x)) = -14 + 9x

Would you like further clarification on any of these?


Related Questions:

  1. What is h(g(x))h(g(x))?
  2. What is f(f(f(1)))f(f(f(-1)))?
  3. Can we evaluate h(f(x))h(f(x)) for a specific value of xx?
  4. How do you find the inverse of g(x)g(x)?
  5. What is the general form of f(x)+g(x)f(x) + g(x)?

Tip:

When substituting values into functions, simplify the inner functions first before proceeding to the outer ones (like with g(h(x))g(h(x))).

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Algebra
Functions
Quadratic Equations
Composite Functions

Formulas

F(x) = 2x - 5
g(x) = 7 - 3x
h(x) = 4 - 3x + x^2
Composite function: f(g(x))

Theorems

-

Suitable Grade Level

Grades 9-11