Math Problem Statement

Diketahui f(x)=x²+3x-5, g(x)=4x-1, h(x) 3x+2 tentukan fog(x)

Solution

Untuk menentukan fg(x)f \circ g(x) (atau f(g(x))f(g(x))), kita perlu mengganti setiap xx dalam fungsi f(x)f(x) dengan g(x)g(x).

Diketahui: f(x)=x2+3x5f(x) = x^2 + 3x - 5 g(x)=4x1g(x) = 4x - 1

Kita ingin mencari f(g(x))f(g(x)):

  1. Substitusi g(x)=4x1g(x) = 4x - 1 ke dalam f(x)f(x): f(g(x))=f(4x1)f(g(x)) = f(4x - 1)

  2. Hitung f(4x1)f(4x - 1) dengan memasukkan 4x14x - 1 ke dalam f(x)=x2+3x5f(x) = x^2 + 3x - 5: f(4x1)=(4x1)2+3(4x1)5f(4x - 1) = (4x - 1)^2 + 3(4x - 1) - 5

  3. Selesaikan step-by-step:

    • Hitung (4x1)2(4x - 1)^2: (4x1)2=(4x)22×4x×1+12=16x28x+1(4x - 1)^2 = (4x)^2 - 2 \times 4x \times 1 + 1^2 = 16x^2 - 8x + 1
    • Hitung 3(4x1)3(4x - 1): 3(4x1)=12x33(4x - 1) = 12x - 3
  4. Masukkan hasil di atas ke dalam persamaan: f(4x1)=16x28x+1+12x35f(4x - 1) = 16x^2 - 8x + 1 + 12x - 3 - 5

  5. Sederhanakan: f(4x1)=16x2+4x7f(4x - 1) = 16x^2 + 4x - 7

Jadi, fg(x)=f(g(x))=16x2+4x7f \circ g(x) = f(g(x)) = 16x^2 + 4x - 7.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Algebra
Function Composition
Quadratic Equations

Formulas

Function composition: f(g(x)) = f(expression of g(x))
Expansion of (a+b)^2 = a^2 + 2ab + b^2

Theorems

Basic properties of polynomial functions

Suitable Grade Level

Grades 9-10