Math Problem Statement

اريد الحل

اريد الحل

Solution

Let's solve each of these problems by finding g(x)g(x) and h(x)h(x) such that f(x)=g(h(x))f(x) = g(h(x)):


35(a) f(x)=x+2f(x) = \sqrt{x+2}

We want f(x)=g(h(x))f(x) = g(h(x)). Let:

  • h(x)=x+2h(x) = x+2
  • g(x)=xg(x) = \sqrt{x}

Thus, g(h(x))=h(x)=x+2g(h(x)) = \sqrt{h(x)} = \sqrt{x+2}.


35(b) f(x)=x23x+5f(x) = |x^2 - 3x + 5|

We want f(x)=g(h(x))f(x) = g(h(x)). Let:

  • h(x)=x23x+5h(x) = x^2 - 3x + 5
  • g(x)=xg(x) = |x|

Thus, g(h(x))=h(x)=x23x+5g(h(x)) = |h(x)| = |x^2 - 3x + 5|.


36(a) f(x)=x2+1f(x) = x^2 + 1

We want f(x)=g(h(x))f(x) = g(h(x)). Let:

  • h(x)=x2h(x) = x^2
  • g(x)=x+1g(x) = x + 1

Thus, g(h(x))=h(x)+1=x2+1g(h(x)) = h(x) + 1 = x^2 + 1.


36(b) f(x)=1x3f(x) = \frac{1}{x-3}

We want f(x)=g(h(x))f(x) = g(h(x)). Let:

  • h(x)=x3h(x) = x-3
  • g(x)=1xg(x) = \frac{1}{x}

Thus, g(h(x))=1h(x)=1x3g(h(x)) = \frac{1}{h(x)} = \frac{1}{x-3}.


37(a) f(x)=sin2xf(x) = \sin^2 x

We want f(x)=g(h(x))f(x) = g(h(x)). Let:

  • h(x)=sin(x)h(x) = \sin(x)
  • g(x)=x2g(x) = x^2

Thus, g(h(x))=h(x)2=sin2xg(h(x)) = h(x)^2 = \sin^2 x.


37(b) f(x)=35+cosxf(x) = \frac{3}{5+\cos x}

We want f(x)=g(h(x))f(x) = g(h(x)). Let:

  • h(x)=5+cos(x)h(x) = 5 + \cos(x)
  • g(x)=3xg(x) = \frac{3}{x}

Thus, g(h(x))=3h(x)=35+cosxg(h(x)) = \frac{3}{h(x)} = \frac{3}{5+\cos x}.


Would you like further clarifications or additional examples? Here are five related questions to consider:

  1. Can you generalize the process of finding g(x)g(x) and h(x)h(x) for any given function f(x)f(x)?
  2. What alternative choices for g(x)g(x) and h(x)h(x) could work for f(x)=x+2f(x) = \sqrt{x+2}?
  3. How do we handle cases where f(x)f(x) includes composite trigonometric functions?
  4. What happens if f(x)f(x) involves an absolute value with nested operations?
  5. Can you verify these solutions by explicitly substituting h(x)h(x) into g(x)g(x)?

Tip: Always choose h(x)h(x) to simplify the innermost expression in f(x)f(x), then define g(x)g(x) accordingly.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Function Composition
Algebra
Trigonometry
Absolute Value Functions

Formulas

f(x) = g(h(x))

Theorems

Composition of Functions

Suitable Grade Level

Grades 10-12