Math Problem Statement

If the point (1, 2, 3) is the centroid of triangle ABC with vertices A(p, 5, 9), B(4, q, -6), and C(10, 8, r), and the triangle lies in the plane 2x - y + z = 7, find the values of p, q, and r.

Solution

The centroid of a triangle is the average of the coordinates of its three vertices. Given the centroid (1,2,3)(1, 2, 3) and the vertices of the triangle A(p,5,9)A(p, 5, 9), B(4,q,6)B(4, q, -6), and C(10,8,r)C(10, 8, r), we can use the formula for the coordinates of the centroid:

(p+4+103,5+q+83,96+r3)=(1,2,3)\left( \frac{p + 4 + 10}{3}, \frac{5 + q + 8}{3}, \frac{9 - 6 + r}{3} \right) = (1, 2, 3)

We now equate the coordinates to find pp, qq, and rr.

Step 1: Find pp, qq, and rr using the centroid condition

From the xx-coordinate: p+4+103=1p+14=3p=11\frac{p + 4 + 10}{3} = 1 \quad \Rightarrow \quad p + 14 = 3 \quad \Rightarrow \quad p = -11

From the yy-coordinate: 5+q+83=2q+13=6q=7\frac{5 + q + 8}{3} = 2 \quad \Rightarrow \quad q + 13 = 6 \quad \Rightarrow \quad q = -7

From the zz-coordinate: 96+r3=3r+3=9r=6\frac{9 - 6 + r}{3} = 3 \quad \Rightarrow \quad r + 3 = 9 \quad \Rightarrow \quad r = 6

Thus, we have p=11p = -11, q=7q = -7, and r=6r = 6.

Step 2: Verify the points lie on the plane 2xy+z=72x - y + z = 7

For vertex A(11,5,9)A(-11, 5, 9): 2(11)5+9=225+9=18(not on the plane)2(-11) - 5 + 9 = -22 - 5 + 9 = -18 \quad (\text{not on the plane})

For vertex B(4,7,6)B(4, -7, -6): 2(4)(7)+(6)=8+76=9(not on the plane)2(4) - (-7) + (-6) = 8 + 7 - 6 = 9 \quad (\text{not on the plane})

For vertex C(10,8,6)C(10, 8, 6): [ 2(10) - 8 + 6 = 20 - 8 + 6 = 18 \quad (\text{not on the plane})

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Centroid of a Triangle
Coordinate Geometry
Plane Equation

Formulas

Centroid formula: ((x1 + x2 + x3)/3, (y1 + y2 + y3)/3, (z1 + z2 + z3)/3)
Plane equation: 2x - y + z = 7

Theorems

Centroid Theorem in Coordinate Geometry

Suitable Grade Level

Grades 10-12