Math Problem Statement

Given OA = p and OD = q. Also, OA:AB = 3:2 and 2BC = OD. Find: a) the position vector of C, b) AC, and c) CD.

Solution

Let's analyze the problem step by step.

Given:

  • OA=p\vec{OA} = \vec{p} and OD=q\vec{OD} = \vec{q}.
  • The ratio OA:AB=3:2OA:AB = 3:2, meaning OAAB=32\frac{OA}{AB} = \frac{3}{2}.
  • 2BC=OD2BC = OD, so 2BC=OD=q2\vec{BC} = \vec{OD} = \vec{q}, hence BC=q2\vec{BC} = \frac{\vec{q}}{2}.

a) Find the position vector of C (i.e., OC\vec{OC}):

First, let's express OB\vec{OB}:

  • From the ratio OAAB=32\frac{OA}{AB} = \frac{3}{2}, we know that AB=23OAAB = \frac{2}{3} OA, so: AB=23p\vec{AB} = \frac{2}{3} \vec{p}
  • Therefore, the position vector of point B: OB=OA+AB=p+23p=53p\vec{OB} = \vec{OA} + \vec{AB} = \vec{p} + \frac{2}{3} \vec{p} = \frac{5}{3} \vec{p}

Now, use the fact that BC=q2\vec{BC} = \frac{\vec{q}}{2} to find OC\vec{OC}:

  • OC=OB+BC=53p+q2\vec{OC} = \vec{OB} + \vec{BC} = \frac{5}{3} \vec{p} + \frac{\vec{q}}{2}.

Thus, the position vector of C is: OC=53p+12q\vec{OC} = \frac{5}{3} \vec{p} + \frac{1}{2} \vec{q}


b) Find AC\vec{AC}:

To find AC\vec{AC}, use the relation: AC=OCOA\vec{AC} = \vec{OC} - \vec{OA} Substitute the values: AC=(53p+12q)p\vec{AC} = \left( \frac{5}{3} \vec{p} + \frac{1}{2} \vec{q} \right) - \vec{p} Simplify: AC=(53p33p)+12q=23p+12q\vec{AC} = \left( \frac{5}{3} \vec{p} - \frac{3}{3} \vec{p} \right) + \frac{1}{2} \vec{q} = \frac{2}{3} \vec{p} + \frac{1}{2} \vec{q}


c) Find CD\vec{CD}:

To find CD\vec{CD}, use: CD=ODOC\vec{CD} = \vec{OD} - \vec{OC} Substitute: CD=q(53p+12q)\vec{CD} = \vec{q} - \left( \frac{5}{3} \vec{p} + \frac{1}{2} \vec{q} \right) Simplify: CD=53p+(112)q=53p+12q\vec{CD} = -\frac{5}{3} \vec{p} + \left( 1 - \frac{1}{2} \right) \vec{q} = -\frac{5}{3} \vec{p} + \frac{1}{2} \vec{q}


Would you like any further details or clarifications? Here are five related questions to expand on this:

  1. How can the position vectors of other points in the diagram be expressed in terms of p\vec{p} and q\vec{q}?
  2. What happens to the position of C if the ratio OA:ABOA:AB changes?
  3. Can you generalize the formula for OC\vec{OC} if the ratio between OAOA and ABAB changes?
  4. How would the results change if 2BCOD2BC \neq OD but rather another scalar multiple?
  5. Can you derive the length of ACAC using the position vectors?

Tip: Always start by finding vectors step by step using known points before moving on to other derived vectors!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Vectors
Geometry
Ratio

Formulas

Position vector formula: \( \vec{AC} = \vec{OC} - \vec{OA} \)
Vector addition: \( \vec{OC} = \vec{OB} + \vec{BC} \)

Theorems

Vector addition theorem

Suitable Grade Level

Grades 10-12