Math Problem Statement

Find the equilibrium vector for the transition matrix: \[ P = \begin{bmatrix} 0.65 & 0.10 & 0.25 \\ 0.10 & 0.80 & 0.10 \\ 0.10 & 0.40 & 0.50 \end{bmatrix} \]

Solution

To find the equilibrium vector for a transition matrix, we need to find a vector v such that:

Pv=vP \cdot \mathbf{v} = \mathbf{v}

where PP is the transition matrix and v\mathbf{v} is the equilibrium vector. This equation implies that v is an eigenvector of P with eigenvalue 1. Additionally, the elements of v must sum to 1, because v represents a probability distribution in a Markov chain.

Given Matrix

The matrix PP is: P=[0.650.100.250.100.800.100.100.400.50]P = \begin{bmatrix} 0.65 & 0.10 & 0.25 \\ 0.10 & 0.80 & 0.10 \\ 0.10 & 0.40 & 0.50 \end{bmatrix}

Steps to Solve

  1. Set up the equations for the equilibrium vector: P[xyz]=[xyz]P \cdot \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} x \\ y \\ z \end{bmatrix} which translates to:

    0.65x + 0.10y + 0.25z = x \\ 0.10x + 0.80y + 0.10z = y \\ 0.10x + 0.40y + 0.50z = z \\ \end{cases}$$
  2. Rewrite each equation by moving terms to one side to set up a system of linear equations:

    -0.35x + 0.10y + 0.25z = 0 \\ 0.10x - 0.20y + 0.10z = 0 \\ 0.10x + 0.40y - 0.50z = 0 \\ \end{cases}$$
  3. Add the constraint x+y+z=1x + y + z = 1 (since it’s a probability vector).

  4. Solve this system of equations to find the values of xx, yy, and zz.

I'll proceed with the calculations.The equilibrium vector for the given transition matrix is:

[ \mathbf{v} = \begin{bmatrix} \frac{1}{3} \ \frac{1}{3} \ \frac{1}{3} \end{bmatrix} = \begin{bmatrix}

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Linear Algebra
Markov Chains
Equilibrium Vector

Formulas

P ⋅ v = v
x + y + z = 1 (for probability distribution)

Theorems

Markov Chain Stationary Distribution

Suitable Grade Level

College Level