Math Problem Statement

Find r(t) if r′(t) = t i + et j + tet k and r(0) = i + j + k

Solution

To find r(t)r(t), we need to integrate r(t)r'(t) and then apply the initial condition r(0)=i+j+kr(0) = \mathbf{i} + \mathbf{j} + \mathbf{k}.

Given: r(t)=ti+etj+tetkr'(t) = t \mathbf{i} + e^t \mathbf{j} + t e^t \mathbf{k}

We will integrate each component with respect to tt:

  1. For the i\mathbf{i} component: tdt=t22\int t \, dt = \frac{t^2}{2}

  2. For the j\mathbf{j} component: etdt=et\int e^t \, dt = e^t

  3. For the k\mathbf{k} component: tetdt\int t e^t \, dt We can use integration by parts for this: u=t,dv=etdtdu=dt,v=etu = t, \quad dv = e^t dt \quad \Rightarrow \quad du = dt, \quad v = e^t Then, tetdt=tetetdt=tetet=(t1)et\int t e^t \, dt = t e^t - \int e^t \, dt = t e^t - e^t = (t - 1)e^t

So, integrating r(t)r'(t), we get: r(t)=t22i+etj+(t1)etk+Cr(t) = \frac{t^2}{2} \mathbf{i} + e^t \mathbf{j} + (t - 1) e^t \mathbf{k} + \mathbf{C} where C\mathbf{C} is the constant vector of integration.

Now, apply the initial condition r(0)=i+j+kr(0) = \mathbf{i} + \mathbf{j} + \mathbf{k}: r(0)=022i+e0j+(01)e0k+C=0i+1j1k+Cr(0) = \frac{0^2}{2} \mathbf{i} + e^0 \mathbf{j} + (0 - 1) e^0 \mathbf{k} + \mathbf{C} = \mathbf{0} \mathbf{i} + 1 \mathbf{j} - 1 \mathbf{k} + \mathbf{C} r(0)=C+jkr(0) = \mathbf{C} + \mathbf{j} - \mathbf{k} Since r(0)=i+j+kr(0) = \mathbf{i} + \mathbf{j} + \mathbf{k}, we have: C+jk=i+j+k\mathbf{C} + \mathbf{j} - \mathbf{k} = \mathbf{i} + \mathbf{j} + \mathbf{k} This gives: C=i+0j+2k\mathbf{C} = \mathbf{i} + 0 \mathbf{j} + 2 \mathbf{k}

Thus, the constant vector is C=i+2k\mathbf{C} = \mathbf{i} + 2 \mathbf{k}.

Finally, the vector function r(t)r(t) is: r(t)=t22i+etj+(t1)etk+i+2kr(t) = \frac{t^2}{2} \mathbf{i} + e^t \mathbf{j} + (t - 1) e^t \mathbf{k} + \mathbf{i} + 2 \mathbf{k} Simplifying: r(t)=(t22+1)i+etj+((t1)et+2)kr(t) = \left( \frac{t^2}{2} + 1 \right) \mathbf{i} + e^t \mathbf{j} + \left( (t - 1) e^t + 2 \right) \mathbf{k}

This is the final solution for r(t)r(t).

Would you like further details on any step?


Related questions:

  1. What is the method of integration by parts, and how does it apply in this example?
  2. How do you apply initial conditions to solve for constants in vector-valued functions?
  3. Can you explain how to simplify vector functions after integration?
  4. What is the significance of the constant vector C\mathbf{C} in vector calculus?
  5. How does the exponential function behave in integrations involving products like tett e^t?

Tip: When solving vector functions, treat each component separately and integrate accordingly.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Vector Calculus
Integration by Parts
Initial Conditions in Vector Functions

Formulas

Integral of t: ∫t dt = t^2 / 2
Integral of e^t: ∫e^t dt = e^t
Integral of t e^t: ∫t e^t dt = (t - 1)e^t
Initial Condition: r(0) = i + j + k

Theorems

Integration by Parts

Suitable Grade Level

College Level (Calculus II or III)