Math Problem Statement

please give the correct answer step by step

Diketahui g∘f(x) = (3x - 5) / (2x - 2), x ≠ 1 dan f(x) = 3x - 1, maka nilai g(-2) = ....

Solution

Let's break down the given problem step by step.

We are given: g(f(x))=3x52x2,x1g(f(x)) = \frac{3x - 5}{2x - 2}, \quad x \neq 1 and f(x)=3x1f(x) = 3x - 1

We are tasked with finding g(2)g(-2).

Step 1: Express g(f(x))g(f(x))

We know that: g(f(x))=3x52x2g(f(x)) = \frac{3x - 5}{2x - 2} But we need to find g(2)g(-2), so we must first substitute f(x)f(x) into this expression.

Step 2: Set f(x)=3x1f(x) = 3x - 1

From the function f(x)=3x1f(x) = 3x - 1, substitute f(x)=yf(x) = y, so we rewrite the given equation: g(y)=3x52x2,where y=f(x)g(y) = \frac{3x - 5}{2x - 2}, \quad \text{where } y = f(x) To find g(2)g(-2), we need to solve for the value of xx such that f(x)=2f(x) = -2.

Step 3: Solve for xx when f(x)=2f(x) = -2

We set f(x)=3x1f(x) = 3x - 1 equal to 2-2: 3x1=23x - 1 = -2 Now, solve for xx: 3x=2+13x = -2 + 1 3x=13x = -1 x=13x = -\frac{1}{3}

Step 4: Substitute x=13x = -\frac{1}{3} into g(f(x))g(f(x))

Now, substitute x=13x = -\frac{1}{3} into the expression for g(f(x))g(f(x)): g(f(x))=3x52x2g(f(x)) = \frac{3x - 5}{2x - 2} Substitute x=13x = -\frac{1}{3} into this expression: g(f(13))=3(13)52(13)2g(f(-\frac{1}{3})) = \frac{3\left(-\frac{1}{3}\right) - 5}{2\left(-\frac{1}{3}\right) - 2} Simplify the numerator and the denominator:

Numerator: 3(13)5=15=63\left(-\frac{1}{3}\right) - 5 = -1 - 5 = -6

Denominator: 2(13)2=232=2363=832\left(-\frac{1}{3}\right) - 2 = -\frac{2}{3} - 2 = -\frac{2}{3} - \frac{6}{3} = -\frac{8}{3}

Step 5: Final computation

Now, the expression becomes: g(2)=683=6×38=188=94g(-2) = \frac{-6}{-\frac{8}{3}} = -6 \times -\frac{3}{8} = \frac{18}{8} = \frac{9}{4}

Thus, the value of g(2)g(-2) is: g(2)=94g(-2) = \frac{9}{4}

Would you like more details or have any questions?

Here are 5 related questions for practice:

  1. What is the general formula for the composition of two functions g(f(x))g(f(x))?
  2. How do you find the inverse of a linear function?
  3. If f(x)=2x+3f(x) = 2x + 3 and g(x)=1x1g(x) = \frac{1}{x - 1}, what is g(f(1))g(f(1))?
  4. How would you graph the function g(x)=3x52x2g(x) = \frac{3x - 5}{2x - 2}?
  5. How can you solve function composition problems using algebraic substitution?

Tip: Always check the domain restrictions in function problems to avoid undefined values!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Function Composition
Algebra

Formulas

g(f(x)) = (3x - 5) / (2x - 2)
f(x) = 3x - 1

Theorems

Function Composition

Suitable Grade Level

Grades 10-12