Math Problem Statement

Find the values of the trigonometric functions of 𝜃 from the information given.

cot(𝜃) = − 2/5,cos(𝜃) > 0

Solution

Given that cot(θ)=25\cot(\theta) = -\frac{2}{5} and cos(θ)>0\cos(\theta) > 0, we need to find the values of the other trigonometric functions.

Step 1: Determine the quadrant

  • cot(θ)=cos(θ)sin(θ)=25\cot(\theta) = \frac{\cos(\theta)}{\sin(\theta)} = -\frac{2}{5}. Since cot(θ)\cot(\theta) is negative and cos(θ)>0\cos(\theta) > 0, θ\theta must be in the fourth quadrant, where cosine is positive and sine is negative.

Step 2: Use the cotangent to find sine and cosine

Let's denote:

  • cos(θ)=x\cos(\theta) = x
  • sin(θ)=y\sin(\theta) = y

Given: xy=25\frac{x}{y} = -\frac{2}{5}

This implies: x=2y/5x = -2y/5

Step 3: Use the Pythagorean identity

We know from the identity: x2+y2=1x^2 + y^2 = 1

Substitute x=25yx = -\frac{2}{5}y into the identity: (25y)2+y2=1\left(-\frac{2}{5}y\right)^2 + y^2 = 1

Simplify: 425y2+y2=1\frac{4}{25}y^2 + y^2 = 1 425y2+2525y2=1\frac{4}{25}y^2 + \frac{25}{25}y^2 = 1 2925y2=1\frac{29}{25}y^2 = 1 y2=2529y^2 = \frac{25}{29} y=2529=529y = -\sqrt{\frac{25}{29}} = -\frac{5}{\sqrt{29}} (since y=sin(θ)y = \sin(\theta) and sin(θ)\sin(\theta) is negative in the fourth quadrant).

Now find xx: x=25y=25×529=229x = -\frac{2}{5}y = -\frac{2}{5} \times -\frac{5}{\sqrt{29}} = \frac{2}{\sqrt{29}}

Step 4: Compute the trigonometric functions

  • sin(θ)\sin(\theta): y=529y = -\frac{5}{\sqrt{29}}
  • cos(θ)\cos(\theta): x=229x = \frac{2}{\sqrt{29}}
  • tan(θ)\tan(\theta): sin(θ)cos(θ)=529229=52\frac{\sin(\theta)}{\cos(\theta)} = \frac{-\frac{5}{\sqrt{29}}}{\frac{2}{\sqrt{29}}} = -\frac{5}{2}
  • csc(θ)\csc(\theta): 1sin(θ)=295\frac{1}{\sin(\theta)} = -\frac{\sqrt{29}}{5}
  • sec(θ)\sec(\theta): 1cos(θ)=292\frac{1}{\cos(\theta)} = \frac{\sqrt{29}}{2}
  • cot(θ)\cot(\theta): Given as 25-\frac{2}{5}

Final Answer:

sin(θ)=529,cos(θ)=229,tan(θ)=52\sin(\theta) = -\frac{5}{\sqrt{29}}, \quad \cos(\theta) = \frac{2}{\sqrt{29}}, \quad \tan(\theta) = -\frac{5}{2} csc(θ)=295,sec(θ)=292,cot(θ)=25\csc(\theta) = -\frac{\sqrt{29}}{5}, \quad \sec(\theta) = \frac{\sqrt{29}}{2}, \quad \cot(\theta) = -\frac{2}{5}

Would you like more details on any step, or have any further questions?


Related Questions:

  1. How do you determine the quadrant of an angle given one trigonometric function and its sign?
  2. What is the relationship between sin(θ)\sin(\theta) and cos(θ)\cos(\theta) when given cot(θ)\cot(\theta)?
  3. How do the signs of trigonometric functions vary across different quadrants?
  4. What are the key identities used in trigonometry for solving such problems?
  5. Can we solve for trigonometric functions if only tan(θ)\tan(\theta) is given?

Tip: Always remember the ASTC rule (All Students Take Calculus) to determine the sign of trigonometric functions in different quadrants.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry
Trigonometric Functions
Quadrants

Formulas

cot(𝜃) = cos(𝜃) / sin(𝜃)
Pythagorean Identity: sin^2(𝜃) + cos^2(𝜃) = 1

Theorems

Pythagorean Identity
Quadrant Determination using Signs

Suitable Grade Level

Grades 10-12