Math Problem Statement

In the diagram below, start overline, P, Q, end overlinePQ​ is parallel to start overline, M, N, end overlineMN. If P, QPQ is 66 more than O, QOQ, O, N, equals, 12ON=12, and M, N, equals, 21MN=21, find the length of start overline, O, Q, end overlineOQ​. Figures are not necessarily drawn to scale. State your answer in simplest radical form, if necessary.

MN

Solution

This problem involves proportional relationships created by parallel lines in a triangle-like configuration. Here’s how we solve step by step:


Step 1: Understand the Geometry

  • PQMN\overline{PQ} \parallel \overline{MN}: Parallel lines in a triangle create similar triangles by the Basic Proportionality Theorem (also known as Thales' Theorem).
  • OQ\overline{OQ} and ON\overline{ON} are the parts of the segment divided by the parallel lines.
  • PQ=OQ+66\overline{PQ} = \overline{OQ} + 66: Given.
  • ON=12\overline{ON} = 12: Given.
  • MN=21\overline{MN} = 21: Given.

From the Basic Proportionality Theorem, the ratios of the corresponding segments are equal: OQON=PQMN\frac{\overline{OQ}}{\overline{ON}} = \frac{\overline{PQ}}{\overline{MN}}


Step 2: Substitution

From the problem, substitute the values into the proportion: OQ12=OQ+6621\frac{\overline{OQ}}{12} = \frac{\overline{OQ} + 66}{21}


Step 3: Solve the Proportion

Cross-multiply to eliminate the fractions: 21OQ=12(OQ+66)21 \cdot \overline{OQ} = 12 \cdot (\overline{OQ} + 66)

Distribute on the right-hand side: 21OQ=12OQ+126621 \cdot \overline{OQ} = 12 \cdot \overline{OQ} + 12 \cdot 66

Simplify: 21OQ=12OQ+79221 \cdot \overline{OQ} = 12 \cdot \overline{OQ} + 792

Combine like terms: 21OQ12OQ=79221 \cdot \overline{OQ} - 12 \cdot \overline{OQ} = 792

9OQ=7929 \cdot \overline{OQ} = 792

Solve for OQ\overline{OQ}: OQ=7929=88\overline{OQ} = \frac{792}{9} = 88


Step 4: Verify

Now, substitute OQ=88\overline{OQ} = 88 back into the given relationships:

  • PQ=OQ+66=88+66=154\overline{PQ} = \overline{OQ} + 66 = 88 + 66 = 154
  • Check the proportion: OQON=PQMN\frac{\overline{OQ}}{\overline{ON}} = \frac{\overline{PQ}}{\overline{MN}} 8812=15421\frac{88}{12} = \frac{154}{21} Simplify both ratios: 8812=223,15421=223\frac{88}{12} = \frac{22}{3}, \quad \frac{154}{21} = \frac{22}{3} The proportions are equal, so the solution is verified.

Final Answer:

The length of OQ\overline{OQ} is: 88\boxed{88}

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Proportions
Similar Triangles
Basic Proportionality Theorem

Formulas

Proportionality: OQ / ON = PQ / MN
Cross-multiplication to solve proportions

Theorems

Basic Proportionality Theorem (Thales' Theorem)

Suitable Grade Level

Grades 8-10