Math Problem Statement

Question 8 select two eigenvectors of the matrix A= [[3/2,-1][-1/2,1/2]] . A. v1= [-1-sqrroot(5), 1], v2 = [-1+sqrroot(5), 1]. B. v1= [1-sqrroot(3), 1], v2 = [1+sqrroot(3), 1]. C. v1= [1-sqrroot(5), 1], v2 = [1+sqrroot(5), 1]. D. v1= [-1-sqrroot(3), 1], v2 = [-1+sqrroot(3), 1]

Solution

To find the correct eigenvectors of the matrix A=[3211212]A = \begin{bmatrix} \frac{3}{2} & -1 \\ -\frac{1}{2} & \frac{1}{2} \end{bmatrix}, we first need to compute the eigenvalues of the matrix. Then, we find the corresponding eigenvectors.

Step 1: Find the Eigenvalues

The eigenvalues λ\lambda of matrix AA are found by solving the characteristic equation:

det(AλI)=0,\text{det}(A - \lambda I) = 0,

where II is the identity matrix. The characteristic equation becomes:

32λ11212λ=0.\begin{vmatrix} \frac{3}{2} - \lambda & -1 \\ -\frac{1}{2} & \frac{1}{2} - \lambda \end{vmatrix} = 0.

Calculating the determinant:

(32λ)(12λ)(1)(12)=0.(\frac{3}{2} - \lambda)(\frac{1}{2} - \lambda) - (-1)(-\frac{1}{2}) = 0.

Simplifying this:

(32λ)(12λ)12=0.(\frac{3}{2} - \lambda)(\frac{1}{2} - \lambda) - \frac{1}{2} = 0.

(3212)(32λ)(12λ)+λ212=0.\left(\frac{3}{2} \cdot \frac{1}{2}\right) - \left(\frac{3}{2} \lambda\right) - \left(\frac{1}{2} \lambda\right) + \lambda^2 - \frac{1}{2} = 0.

342λ+λ212=0.\frac{3}{4} - 2\lambda + \lambda^2 - \frac{1}{2} = 0.

Simplify to form a standard quadratic equation:

λ22λ+14=0.\lambda^2 - 2\lambda + \frac{1}{4} = 0.

Solve this equation using the quadratic formula:

λ=(2)±(2)24(1)(14)2(1).\lambda = \frac{-(-2) \pm \sqrt{(-2)^2 - 4(1)(\frac{1}{4})}}{2(1)}.

After solving, plug back to find corresponding eigenvectors then compare to answer choices.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Linear Algebra
Eigenvalues
Eigenvectors
Matrix Operations

Formulas

Characteristic equation
Quadratic formula

Theorems

-

Suitable Grade Level

Advanced College Level