Math Problem Statement

Jawaban

Tentukan panjang sisi AB pada tiap bangun berikut, tentukan luas tiap bangun berikut, dan ketahui kelompok bilangan yang merupakan ukuran segitiga siku-siku.

Solution

Let's go through each of the questions in the image and solve them step by step.

1. Find the length of side AB in each figure:

a. Right triangle with sides:

  • CD=10cmCD = 10 \, \text{cm}
  • DA=6cmDA = 6 \, \text{cm}
  • BC=15cmBC = 15 \, \text{cm}

We can use the Pythagorean theorem: AB2=BC2+AC2AB^2 = BC^2 + AC^2 First, find ACAC using Pythagoras on ACD\triangle ACD: AC2=CD2DA2=10262=10036=64AC=8cmAC^2 = CD^2 - DA^2 = 10^2 - 6^2 = 100 - 36 = 64 \quad \Rightarrow \quad AC = 8 \, \text{cm} Now, use the Pythagorean theorem on ABC\triangle ABC: AB2=BC2+AC2=152+82=225+64=289AB=289=17cmAB^2 = BC^2 + AC^2 = 15^2 + 8^2 = 225 + 64 = 289 \quad \Rightarrow \quad AB = \sqrt{289} = 17 \, \text{cm}

b. Right triangle with sides:

  • AE=12cmAE = 12 \, \text{cm}
  • AC=15cmAC = 15 \, \text{cm}
  • BC=20cmBC = 20 \, \text{cm}

Using the Pythagorean theorem: AB2=AC2+BC2=152+202=225+400=625AB=625=25cmAB^2 = AC^2 + BC^2 = 15^2 + 20^2 = 225 + 400 = 625 \quad \Rightarrow \quad AB = \sqrt{625} = 25 \, \text{cm}

2. Find the area of each figure:

a. Trapezoid with:

  • Bases: 13cm13 \, \text{cm} and 25cm25 \, \text{cm}
  • Height: 24cm24 \, \text{cm}

The formula for the area of a trapezoid is: Area=12×(Base1+Base2)×Height\text{Area} = \frac{1}{2} \times ( \text{Base}_1 + \text{Base}_2 ) \times \text{Height} Substituting the values: Area=12×(13+25)×24=12×38×24=456cm2\text{Area} = \frac{1}{2} \times (13 + 25) \times 24 = \frac{1}{2} \times 38 \times 24 = 456 \, \text{cm}^2

b. Rhombus with:

  • Diagonals: 12cm12 \, \text{cm} and 12cm12 \, \text{cm}

The formula for the area of a rhombus is: Area=12×d1×d2\text{Area} = \frac{1}{2} \times d_1 \times d_2 Substituting the values: Area=12×12×12=72cm2\text{Area} = \frac{1}{2} \times 12 \times 12 = 72 \, \text{cm}^2

3. Determine which set of numbers forms the sides of a right triangle:

We use the Pythagorean theorem to check which group of numbers satisfies a2+b2=c2a^2 + b^2 = c^2.

  • Set a: 12,16,2012, 16, 20 122+162=144+256=400and202=400This set forms a right triangle.12^2 + 16^2 = 144 + 256 = 400 \quad \text{and} \quad 20^2 = 400 \quad \Rightarrow \quad \text{This set forms a right triangle.}

  • Set b: 5,6,75, 6, 7 52+62=25+36=61and72=49This set does not form a right triangle.5^2 + 6^2 = 25 + 36 = 61 \quad \text{and} \quad 7^2 = 49 \quad \Rightarrow \quad \text{This set does not form a right triangle.}

  • Set c: 7,12,137, 12, 13 72+122=49+144=193and132=169This set does not form a right triangle.7^2 + 12^2 = 49 + 144 = 193 \quad \text{and} \quad 13^2 = 169 \quad \Rightarrow \quad \text{This set does not form a right triangle.}

So, the correct answer is Set a: 12, 16, 20.


Would you like more detailed steps or explanations on any of these problems?

Here are 5 related questions to extend your understanding:

  1. How do you calculate the hypotenuse of a right triangle?
  2. What is the formula for the area of a trapezoid?
  3. How can you check if three sides form a right triangle using the Pythagorean theorem?
  4. What is the relationship between diagonals and area in a rhombus?
  5. Can the Pythagorean theorem be used for non-right triangles?

Tip: When solving geometry problems, it's helpful to sketch diagrams and label all given dimensions clearly.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Geometry
Pythagorean Theorem
Trapezoid Area
Rhombus Area
Right Triangles

Formulas

Pythagorean theorem: a^2 + b^2 = c^2
Trapezoid area: (1/2) × (Base1 + Base2) × Height
Rhombus area: (1/2) × d1 × d2

Theorems

Pythagorean Theorem

Suitable Grade Level

Grades 6-8