Math Problem Statement

I ahve a matrice x= 2 1 -1 0

Express it as a producxt of 3 elemtary matrices

Solution

To express a matrix X=(2110)X = \begin{pmatrix} 2 & 1 \\ -1 & 0 \end{pmatrix} as a product of three elementary matrices, we need to apply row operations to transform it into an identity matrix, and then reverse these steps to write XX as a product of elementary matrices.

Step-by-Step Solution

Given: X=(2110)X = \begin{pmatrix} 2 & 1 \\ -1 & 0 \end{pmatrix}

Step 1: Transform XX into the Identity Matrix by Row Operations

To convert XX into the identity matrix I=(1001)I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, we perform row operations and keep track of each elementary matrix used.

  1. Divide Row 1 by 2 to make the first element in the first row equal to 1. (2110)R112R1(11210)\begin{pmatrix} 2 & 1 \\ -1 & 0 \end{pmatrix} \xrightarrow{R_1 \to \frac{1}{2} R_1} \begin{pmatrix} 1 & \frac{1}{2} \\ -1 & 0 \end{pmatrix} The elementary matrix for this operation is: E1=(12001)E_1 = \begin{pmatrix} \frac{1}{2} & 0 \\ 0 & 1 \end{pmatrix}

  2. Add Row 1 to Row 2 to make the first element in the second row equal to 0. (11210)R2R2+R1(112012)\begin{pmatrix} 1 & \frac{1}{2} \\ -1 & 0 \end{pmatrix} \xrightarrow{R_2 \to R_2 + R_1} \begin{pmatrix} 1 & \frac{1}{2} \\ 0 & \frac{1}{2} \end{pmatrix} The elementary matrix for this operation is: E2=(1011)E_2 = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}

  3. Multiply Row 2 by 2 to make the second element in the second row equal to 1. (112012)R22R2(11201)\begin{pmatrix} 1 & \frac{1}{2} \\ 0 & \frac{1}{2} \end{pmatrix} \xrightarrow{R_2 \to 2 R_2} \begin{pmatrix} 1 & \frac{1}{2} \\ 0 & 1 \end{pmatrix} The elementary matrix for this operation is: E3=(1002)E_3 = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}

Step 2: Write XX as a Product of Elementary Matrices

Now, we have E3E2E1X=IE_3 E_2 E_1 X = I, so X=E11E21E31X = E_1^{-1} E_2^{-1} E_3^{-1}.

Let's compute the inverses of each elementary matrix:

  1. E1=(12001)E_1 = \begin{pmatrix} \frac{1}{2} & 0 \\ 0 & 1 \end{pmatrix}, so E11=(2001)E_1^{-1} = \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}.
  2. E2=(1011)E_2 = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}, so E21=(1011)E_2^{-1} = \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix}.
  3. E3=(1002)E_3 = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}, so E31=(10012)E_3^{-1} = \begin{pmatrix} 1 & 0 \\ 0 & \frac{1}{2} \end{pmatrix}.

Thus, we can express XX as: X=E11E21E31=(2001)(1011)(10012)X = E_1^{-1} E_2^{-1} E_3^{-1} = \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & \frac{1}{2} \end{pmatrix}

Final Answer

X=(2001)(1011)(10012)X = \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & \frac{1}{2} \end{pmatrix}

Would you like further explanation on any of the steps?


Here are some related questions for practice:

  1. How can elementary matrices be used to find the inverse of a matrix?
  2. Can every square matrix be expressed as a product of elementary matrices? Why or why not?
  3. What are the properties of elementary matrices and their inverses?
  4. How do row operations affect the determinant of a matrix?
  5. How does matrix factorization help in solving systems of linear equations?

Tip: Remember, each elementary matrix represents a single row operation, making them a powerful tool for understanding matrix transformations.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Linear Algebra
Matrix Theory
Elementary Matrices

Formulas

Matrix multiplication
Elementary matrix definitions

Theorems

Row operations and their effects on matrices
Matrix inversion

Suitable Grade Level

Grades 11-12