Math Problem Statement

Define functions f,g,h,i ∈ F by f : x → cos4(x) g : x → sin4(x) h : x → sin2(2x) i : x → cos(4x) By considering appropriate trigonometric identities, express i as a linear combination of f, g, and h. Give your answer in the form i = af +bg +ch where a,b,c ∈ R. Hint: Begin with cos(4x) = cos(2(2x))

Solution

To express i(x)=cos(4x)i(x) = \cos(4x) as a linear combination of f(x)=cos4(x)f(x) = \cos^4(x), g(x)=sin4(x)g(x) = \sin^4(x), and h(x)=sin2(2x)h(x) = \sin^2(2x), we will use trigonometric identities. Let’s proceed step by step.


Step 1: Rewrite cos(4x)\cos(4x) using a double angle identity

Since the hint suggests starting with cos(4x)=cos(2(2x))\cos(4x) = \cos(2(2x)), we apply the double angle identity:

cos(2θ)=2cos2(θ)1\cos(2\theta) = 2\cos^2(\theta) - 1 Let θ=2x\theta = 2x. Then,

cos(4x)=2cos2(2x)1\cos(4x) = 2\cos^2(2x) - 1


Step 2: Express cos2(2x)\cos^2(2x) in terms of sin2(2x)\sin^2(2x)

We know the Pythagorean identity:

cos2(2x)=1sin2(2x)\cos^2(2x) = 1 - \sin^2(2x) Substituting this into the equation for cos(4x)\cos(4x),

cos(4x)=2(1sin2(2x))1\cos(4x) = 2(1 - \sin^2(2x)) - 1 Expanding the expression,

cos(4x)=22sin2(2x)1=12sin2(2x)\cos(4x) = 2 - 2\sin^2(2x) - 1 = 1 - 2\sin^2(2x)

Thus, we have:

i(x)=12h(x)i(x) = 1 - 2h(x) since h(x)=sin2(2x)h(x) = \sin^2(2x).


Step 3: Express the constant term 11 as a linear combination of f(x)f(x) and g(x)g(x)

We can use the identity:

cos2(x)+sin2(x)=1\cos^2(x) + \sin^2(x) = 1 Squaring both sides,

cos4(x)+2cos2(x)sin2(x)+sin4(x)=1\cos^4(x) + 2\cos^2(x)\sin^2(x) + \sin^4(x) = 1 Notice that cos4(x)=f(x)\cos^4(x) = f(x) and sin4(x)=g(x)\sin^4(x) = g(x), so the equation becomes:

f(x)+g(x)+2cos2(x)sin2(x)=1f(x) + g(x) + 2\cos^2(x)\sin^2(x) = 1 We can rewrite 2cos2(x)sin2(x)2\cos^2(x)\sin^2(x) using the double angle identity sin(2x)=2sin(x)cos(x)\sin(2x) = 2\sin(x)\cos(x):

2cos2(x)sin2(x)=12sin2(2x)=12h(x)2\cos^2(x)\sin^2(x) = \frac{1}{2}\sin^2(2x) = \frac{1}{2}h(x) Therefore, the equation becomes:

1=f(x)+g(x)+12h(x)1 = f(x) + g(x) + \frac{1}{2}h(x)


Step 4: Rearranging to express i(x)i(x) in the desired form

Now, substitute 1=f(x)+g(x)+12h(x)1 = f(x) + g(x) + \frac{1}{2}h(x) into the expression i(x)=12h(x)i(x) = 1 - 2h(x):

i(x)=(f(x)+g(x)+12h(x))2h(x)i(x) = \left(f(x) + g(x) + \frac{1}{2}h(x)\right) - 2h(x) Simplifying:

i(x)=f(x)+g(x)32h(x)i(x) = f(x) + g(x) - \frac{3}{2}h(x)


Final Answer:

i(x)=f(x)+g(x)32h(x)i(x) = f(x) + g(x) - \frac{3}{2}h(x) Thus, the coefficients are:

  • a=1a = 1
  • b=1b = 1
  • c=32c = -\frac{3}{2}

Would you like a more detailed explanation of any part of this solution?


Here are 5 related questions for further practice:

  1. Derive the identity for cos(4x)\cos(4x) using the complex exponential form of cosine.
  2. Verify that cos4(x)+sin4(x)+12sin2(2x)=1\cos^4(x) + \sin^4(x) + \frac{1}{2}\sin^2(2x) = 1 for any xx.
  3. Expand cos4(x)\cos^4(x) and sin4(x)\sin^4(x) in terms of multiple angle identities.
  4. Find the coefficients when expressing sin(4x)\sin(4x) as a linear combination of similar functions.
  5. Use the identity cos2(x)=1+cos(2x)2\cos^2(x) = \frac{1 + \cos(2x)}{2} to express cos4(x)\cos^4(x) in another form.

Tip: Knowing how to manipulate double and triple angle identities is crucial in solving complex trigonometric problems.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry
Trigonometric Identities
Linear Combinations

Formulas

cos(2θ) = 2cos²(θ) - 1
cos²(2x) = 1 - sin²(2x)
cos²(x) + sin²(x) = 1
sin(2x) = 2sin(x)cos(x)

Theorems

Double Angle Identity
Pythagorean Identity

Suitable Grade Level

Grades 11-12