Math Problem Statement

(4x^2+4x+1)^2

Solution

To expand the expression (4x2+4x+1)2(4x^2 + 4x + 1)^2, we apply the formula for squaring a binomial, (a+b)2=a2+2ab+b2(a + b)^2 = a^2 + 2ab + b^2. In this case, we have a trinomial instead of a binomial, so we will use distribution (i.e., multiply the trinomial by itself).

(4x2+4x+1)2=(4x2+4x+1)(4x2+4x+1)(4x^2 + 4x + 1)^2 = (4x^2 + 4x + 1)(4x^2 + 4x + 1)

Step 1: Multiply each term of the first factor by each term of the second factor:

  1. 4x24x2=16x44x^2 \cdot 4x^2 = 16x^4
  2. 4x24x=16x34x^2 \cdot 4x = 16x^3
  3. 4x21=4x24x^2 \cdot 1 = 4x^2
  4. 4x4x2=16x34x \cdot 4x^2 = 16x^3
  5. 4x4x=16x24x \cdot 4x = 16x^2
  6. 4x1=4x4x \cdot 1 = 4x
  7. 14x2=4x21 \cdot 4x^2 = 4x^2
  8. 14x=4x1 \cdot 4x = 4x
  9. 11=11 \cdot 1 = 1

Step 2: Combine like terms:

16x4+16x3+4x2+16x3+16x2+4x+4x2+4x+116x^4 + 16x^3 + 4x^2 + 16x^3 + 16x^2 + 4x + 4x^2 + 4x + 1

Now, group similar powers of xx:

16x4+(16x3+16x3)+(4x2+16x2+4x2)+(4x+4x)+116x^4 + (16x^3 + 16x^3) + (4x^2 + 16x^2 + 4x^2) + (4x + 4x) + 1

Simplify:

16x4+32x3+24x2+8x+116x^4 + 32x^3 + 24x^2 + 8x + 1

Thus, the expanded form is:

(4x2+4x+1)2=16x4+32x3+24x2+8x+1(4x^2 + 4x + 1)^2 = 16x^4 + 32x^3 + 24x^2 + 8x + 1

Would you like more details or have any questions? Here are 5 related problems for practice:

  1. Expand (3x2+2x+1)2(3x^2 + 2x + 1)^2.
  2. Expand (2x+3)2(2x + 3)^2.
  3. Expand (x2+5x+6)2(x^2 + 5x + 6)^2.
  4. Factor the expression 16x4+32x3+24x2+8x+116x^4 + 32x^3 + 24x^2 + 8x + 1.
  5. Find the derivative of 16x4+32x3+24x2+8x+116x^4 + 32x^3 + 24x^2 + 8x + 1.

Tip: When multiplying polynomials, carefully organize and combine like terms to avoid mistakes.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Algebra
Polynomial Expansion
Squaring a Trinomial

Formulas

(a + b)^2 = a^2 + 2ab + b^2

Theorems

Distributive Property

Suitable Grade Level

Grades 9-11