Math Problem Statement

Expand (2x-3)'6 using binomial theorem

Solution

The binomial theorem states that for any integer nn:

(a+b)n=k=0n(nk)ankbk(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k

In this case, a=2xa = 2x, b=3b = -3, and n=6n = 6. Expanding (2x3)6(2x - 3)^6 using the binomial theorem:

(2x3)6=k=06(6k)(2x)6k(3)k(2x - 3)^6 = \sum_{k=0}^6 \binom{6}{k} (2x)^{6-k} (-3)^k

Step-by-Step Expansion:

  1. General term: Tk=(6k)(2x)6k(3)kT_k = \binom{6}{k} (2x)^{6-k} (-3)^k

  2. Individual terms:

    • For k=0k = 0: (60)(2x)6(3)0=1(64x6)1=64x6\binom{6}{0}(2x)^6(-3)^0 = 1 \cdot (64x^6) \cdot 1 = 64x^6
    • For k=1k = 1: (61)(2x)5(3)1=6(32x5)(3)=576x5\binom{6}{1}(2x)^5(-3)^1 = 6 \cdot (32x^5) \cdot (-3) = -576x^5
    • For k=2k = 2: (62)(2x)4(3)2=15(16x4)9=2160x4\binom{6}{2}(2x)^4(-3)^2 = 15 \cdot (16x^4) \cdot 9 = 2160x^4
    • For k=3k = 3: (63)(2x)3(3)3=20(8x3)(27)=4320x3\binom{6}{3}(2x)^3(-3)^3 = 20 \cdot (8x^3) \cdot (-27) = -4320x^3
    • For k=4k = 4: (\binom{6}{4}(2x)^2(-3)^4 = 15 \cdot (

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Algebra
Binomial Expansion
Exponents

Formulas

(a + b)^n = Σ (n choose k) * a^(n-k) * b^k

Theorems

Binomial Theorem

Suitable Grade Level

Grades 9-12