Math Problem Statement

given that g(x)=3x^(2)-5x+10 find each of the following. G(0), G(-2), G(4), g(-x), g(1-t)

Solution

We are given the function:

g(x)=3x25x+10g(x) = 3x^2 - 5x + 10

Finding Specific Values

  1. g(0)g(0)
    g(0)=3(0)25(0)+10=10g(0) = 3(0)^2 - 5(0) + 10 = 10

  2. g(2)g(-2)
    g(2)=3(2)25(2)+10g(-2) = 3(-2)^2 - 5(-2) + 10 =3(4)+10+10=12+10+10=22= 3(4) + 10 + 10 = 12 + 10 + 10 = 22

  3. g(4)g(4)
    g(4)=3(4)25(4)+10g(4) = 3(4)^2 - 5(4) + 10 =3(16)20+10=4820+10=38= 3(16) - 20 + 10 = 48 - 20 + 10 = 38

Finding Expressions

  1. g(x)g(-x)
    g(x)=3(x)25(x)+10g(-x) = 3(-x)^2 - 5(-x) + 10 =3x2+5x+10= 3x^2 + 5x + 10

  2. g(1t)g(1-t)
    g(1t)=3(1t)25(1t)+10g(1-t) = 3(1-t)^2 - 5(1-t) + 10

    Expanding (1t)2(1 - t)^2:
    (1t)2=12t+t2(1 - t)^2 = 1 - 2t + t^2

    Substituting:
    g(1t)=3(12t+t2)5(1t)+10g(1 - t) = 3(1 - 2t + t^2) - 5(1 - t) + 10 =36t+3t25+5t+10= 3 - 6t + 3t^2 - 5 + 5t + 10 =3t2t+8= 3t^2 - t + 8


Would you like a step-by-step breakdown of any part?

Here are five related questions you might find interesting:

  1. Find g(x)g(x) if g(x)=2x24x+7g(x) = 2x^2 - 4x + 7 and evaluate g(3)g(-3).
  2. If g(x)=x26x+9g(x) = x^2 - 6x + 9, simplify g(a+b)g(a + b).
  3. Determine whether g(x)=3x25x+10g(x) = 3x^2 - 5x + 10 is an even, odd, or neither function.
  4. Find the vertex of the quadratic function g(x)=3x25x+10g(x) = 3x^2 - 5x + 10.
  5. Solve for xx when g(x)=0g(x) = 0 for g(x)=3x25x+10g(x) = 3x^2 - 5x + 10.

Tip:

When evaluating g(a)g(a) for any function, always substitute carefully and simplify step by step!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Algebra
Quadratic Functions
Function Evaluation
Polynomial Expressions

Formulas

g(x) = 3x^2 - 5x + 10
g(-x) = 3x^2 + 5x + 10
g(1-t) = 3(1-t)^2 - 5(1-t) + 10

Theorems

Function Evaluation
Expanding binomials

Suitable Grade Level

Grades 9-10