Math Problem Statement

Обчислити без правил Лопатія

Обчислити без правил Лопатія

Solution

To solve the given limit

limn(n+4)2(n2)2(2n+1)2+(n+4)2,\lim_{n \to \infty} \frac{(n+4)^2 - (n-2)^2}{\sqrt{(2n+1)^2 + (n+4)^2}},

we'll simplify the numerator and denominator step by step.

Step 1: Expand the numerator

The numerator is (n+4)2(n2)2(n+4)^2 - (n-2)^2. Expanding each term: (n+4)2=n2+8n+16,(n2)2=n24n+4.(n+4)^2 = n^2 + 8n + 16, \quad (n-2)^2 = n^2 - 4n + 4. Subtracting: (n+4)2(n2)2=(n2+8n+16)(n24n+4)=12n+12.(n+4)^2 - (n-2)^2 = (n^2 + 8n + 16) - (n^2 - 4n + 4) = 12n + 12.

So, the numerator simplifies to: 12n+12=12(n+1).12n + 12 = 12(n + 1).

Step 2: Simplify the denominator

The denominator is (2n+1)2+(n+4)2\sqrt{(2n+1)^2 + (n+4)^2}. Expanding each term: (2n+1)2=4n2+4n+1,(n+4)2=n2+8n+16.(2n+1)^2 = 4n^2 + 4n + 1, \quad (n+4)^2 = n^2 + 8n + 16. Adding these: (2n+1)2+(n+4)2=4n2+4n+1+n2+8n+16=5n2+12n+17.(2n+1)^2 + (n+4)^2 = 4n^2 + 4n + 1 + n^2 + 8n + 16 = 5n^2 + 12n + 17.

So, the denominator becomes: 5n2+12n+17.\sqrt{5n^2 + 12n + 17}.

Step 3: Express the limit

The limit becomes: limn12(n+1)5n2+12n+17.\lim_{n \to \infty} \frac{12(n+1)}{\sqrt{5n^2 + 12n + 17}}.

Step 4: Factor n2n^2 from the square root

To handle the large nn, factor n2n^2 out of the denominator: 5n2+12n+17=n2(5+12n+17n2)=n5+12n+17n2.\sqrt{5n^2 + 12n + 17} = \sqrt{n^2 \left(5 + \frac{12}{n} + \frac{17}{n^2}\right)} = n \sqrt{5 + \frac{12}{n} + \frac{17}{n^2}}.

Step 5: Simplify the fraction

The fraction becomes: 12(n+1)5n2+12n+17=12(n+1)n5+12n+17n2.\frac{12(n+1)}{\sqrt{5n^2 + 12n + 17}} = \frac{12(n+1)}{n \sqrt{5 + \frac{12}{n} + \frac{17}{n^2}}}.

Divide numerator and denominator by nn: =12(1+1n)5+12n+17n2.= \frac{12 \left(1 + \frac{1}{n}\right)}{\sqrt{5 + \frac{12}{n} + \frac{17}{n^2}}}.

Step 6: Evaluate the limit as nn \to \infty

As nn \to \infty, the terms 1n\frac{1}{n}, 12n\frac{12}{n}, and 17n2\frac{17}{n^2} all approach 0. Thus: 5+12n+17n25.\sqrt{5 + \frac{12}{n} + \frac{17}{n^2}} \to \sqrt{5}. And: 1+1n1.1 + \frac{1}{n} \to 1.

So, the limit becomes: 1215=125.\frac{12 \cdot 1}{\sqrt{5}} = \frac{12}{\sqrt{5}}.

Final Answer:

125.\boxed{\frac{12}{\sqrt{5}}}.

Let me know if you need further clarification or step-by-step verification!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Calculus
Limits
Algebraic Simplification
Polynomials
Square Roots

Formulas

Limit of a function as n approaches infinity
Factorization of polynomials
Extraction of leading terms

Theorems

Limit Laws
Leading Term Theorem

Suitable Grade Level

Undergraduate Calculus