Math Problem Statement

If lim (x→a) f(x) = l and lim (x→a) g(x) = m, evaluate the following limits: (a) lim (x→a) f(x)g(x), (b) lim (x→a) [ (f(x) + 2g(x)) / (2f(x) - g(x)) ], (c) lim (x→a) [ 2f(x) + 3g(x) ], (d) lim (x→a) [ (f(x) + g(x)) / (g(x))^2 ], when l, m > 0.

Solution

Let's analyze and solve each of the limits given the conditions limxaf(x)=l\lim_{{x \to a}} f(x) = l and limxag(x)=m\lim_{{x \to a}} g(x) = m.

Part (a)

limxaf(x)g(x)\lim_{{x \to a}} f(x)g(x)

Using the product rule for limits, we get: limxaf(x)g(x)=limxaf(x)limxag(x)=lm\lim_{{x \to a}} f(x)g(x) = \lim_{{x \to a}} f(x) \cdot \lim_{{x \to a}} g(x) = l \cdot m

Part (b)

limxa[f(x)+2g(x)2f(x)g(x)](when l,m>0)\lim_{{x \to a}} \left[ \frac{f(x) + 2g(x)}{2f(x) - g(x)} \right] \quad (\text{when } l, m > 0)

Using the sum and quotient rules for limits: limxa[f(x)+2g(x)2f(x)g(x)]=limxaf(x)+2limxag(x)2limxaf(x)limxag(x)\lim_{{x \to a}} \left[ \frac{f(x) + 2g(x)}{2f(x) - g(x)} \right] = \frac{\lim_{{x \to a}} f(x) + 2\lim_{{x \to a}} g(x)}{2\lim_{{x \to a}} f(x) - \lim_{{x \to a}} g(x)} Substitute the limits: l+2m2lm\frac{l + 2m}{2l - m}

Part (c)

limxa[2f(x)+3g(x)]\lim_{{x \to a}} \left[ 2f(x) + 3g(x) \right]

Using the sum rule for limits: limxa[2f(x)+3g(x)]=2limxaf(x)+3limxag(x)\lim_{{x \to a}} \left[ 2f(x) + 3g(x) \right] = 2\lim_{{x \to a}} f(x) + 3\lim_{{x \to a}} g(x) Substituting the limits: 2l+3m2l + 3m

Part (d)

limxa[f(x)+g(x)(g(x))2](when m>0)\lim_{{x \to a}} \left[ \frac{f(x) + g(x)}{(g(x))^2} \right] \quad (\text{when } m > 0)

Using the sum and quotient rules for limits: limxa[f(x)+g(x)(g(x))2]=limxaf(x)+limxag(x)(limxag(x))2\lim_{{x \to a}} \left[ \frac{f(x) + g(x)}{(g(x))^2} \right] = \frac{\lim_{{x \to a}} f(x) + \lim_{{x \to a}} g(x)}{\left(\lim_{{x \to a}} g(x)\right)^2} Substituting the limits: l+mm2\frac{l + m}{m^2}

Summary of Results

  • (a) limxaf(x)g(x)=lm\lim_{{x \to a}} f(x)g(x) = lm
  • (b) limxa[f(x)+2g(x)2f(x)g(x)]=l+2m2lm\lim_{{x \to a}} \left[ \frac{f(x) + 2g(x)}{2f(x) - g(x)} \right] = \frac{l + 2m}{2l - m}
  • (c) limxa[2f(x)+3g(x)]=2l+3m\lim_{{x \to a}} \left[ 2f(x) + 3g(x) \right] = 2l + 3m
  • (d) limxa[f(x)+g(x)(g(x))2]=l+mm2\lim_{{x \to a}} \left[ \frac{f(x) + g(x)}{(g(x))^2} \right] = \frac{l + m}{m^2}

Would you like a detailed explanation on any of these parts or have any other questions?

Here are some related questions:

  1. What is the significance of the product and quotient rules in limit evaluation?
  2. How does the limit change if ll or mm approaches zero?
  3. Can you provide a real-world example where these types of limits are applied?
  4. How does continuity of functions affect the evaluation of limits?
  5. What happens if f(x)f(x) or g(x)g(x) is undefined at x=ax = a?

Tip: When dealing with limits, it's important to consider the behavior of the function near the point of interest, not just at that specific point.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Limits
Continuity
Algebraic Manipulation

Formulas

lim (x→a) f(x)g(x) = lim (x→a) f(x) * lim (x→a) g(x)
lim (x→a) [ (f(x) + 2g(x)) / (2f(x) - g(x)) ] = (l + 2m) / (2l - m)
lim (x→a) [ 2f(x) + 3g(x) ] = 2l + 3m
lim (x→a) [ (f(x) + g(x)) / (g(x))^2 ] = (l + m) / m^2

Theorems

Product Rule for Limits
Quotient Rule for Limits
Sum Rule for Limits

Suitable Grade Level

Grades 11-12