Math Problem Statement

\int $$$$ \int_0^{\infty}\!sin(q*x)*0.191exp(-0.279x/a)+0.474exp(-0.637x/a)+0.355exp(-1.919x/a)\,\mathrm{d}x

Solution

To evaluate the integral

0sin(qx)(0.191e0.279x/a+0.474e0.637x/a+0.355e1.919x/a)dx\int_0^{\infty} \sin(qx) \left(0.191 e^{-0.279x/a} + 0.474 e^{-0.637x/a} + 0.355 e^{-1.919x/a}\right) \, dx

we can proceed by splitting it into three separate integrals, as follows:

0sin(qx)(0.191e0.279x/a+0.474e0.637x/a+0.355e1.919x/a)dx=0.1910sin(qx)e0.279x/adx+0.4740sin(qx)e0.637x/adx+0.3550sin(qx)e1.919x/adx.\int_0^{\infty} \sin(qx) \left(0.191 e^{-0.279x/a} + 0.474 e^{-0.637x/a} + 0.355 e^{-1.919x/a}\right) \, dx = 0.191 \int_0^{\infty} \sin(qx) e^{-0.279x/a} \, dx + 0.474 \int_0^{\infty} \sin(qx) e^{-0.637x/a} \, dx + 0.355 \int_0^{\infty} \sin(qx) e^{-1.919x/a} \, dx.

Each of these integrals has the general form:

0sin(qx)eαxdx,\int_0^{\infty} \sin(qx) e^{-\alpha x} \, dx,

where α\alpha is a constant. The result of this integral is known and can be evaluated as:

0sin(qx)eαxdx=qα2+q2.\int_0^{\infty} \sin(qx) e^{-\alpha x} \, dx = \frac{q}{\alpha^2 + q^2}.

We apply this result to each term individually:

  1. For 0.1910sin(qx)e0.279x/adx0.191 \int_0^{\infty} \sin(qx) e^{-0.279x/a} \, dx: =0.191q(0.279/a)2+q2=0.191q0.2792/a2+q2.= 0.191 \cdot \frac{q}{(0.279/a)^2 + q^2} = \frac{0.191q}{0.279^2/a^2 + q^2}.

  2. For 0.4740sin(qx)e0.637x/adx0.474 \int_0^{\infty} \sin(qx) e^{-0.637x/a} \, dx: =0.474q(0.637/a)2+q2=0.474q0.6372/a2+q2.= 0.474 \cdot \frac{q}{(0.637/a)^2 + q^2} = \frac{0.474q}{0.637^2/a^2 + q^2}.

  3. For 0.3550sin(qx)e1.919x/adx0.355 \int_0^{\infty} \sin(qx) e^{-1.919x/a} \, dx: =0.355q(1.919/a)2+q2=0.355q1.9192/a2+q2.= 0.355 \cdot \frac{q}{(1.919/a)^2 + q^2} = \frac{0.355q}{1.919^2/a^2 + q^2}.

Finally, summing these three results, we obtain the solution:

0sin(qx)(0.191e0.279x/a+0.474e0.637x/a+0.355e1.919x/a)dx=0.191q0.2792/a2+q2+0.474q0.6372/a2+q2+0.355q1.9192/a2+q2.\int_0^{\infty} \sin(qx) \left(0.191 e^{-0.279x/a} + 0.474 e^{-0.637x/a} + 0.355 e^{-1.919x/a}\right) \, dx = \frac{0.191q}{0.279^2/a^2 + q^2} + \frac{0.474q}{0.637^2/a^2 + q^2} + \frac{0.355q}{1.919^2/a^2 + q^2}.

Let me know if you would like further details or have any questions about the solution.


Here are 5 additional questions you might explore based on this topic:

  1. How does the solution change if we replace the sine function with a cosine?
  2. What happens if the integral limits are changed to [0,b][0, b] instead of [0,][0, \infty]?
  3. How would the result change if different exponential terms were used?
  4. Can this approach be generalized to solve similar integrals with other functions?
  5. What is the effect of changing the constant aa on the value of the integral?

Tip: When solving integrals with exponential and trigonometric functions, breaking down the integral into smaller parts can simplify the evaluation significantly.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Integral Calculus
Trigonometric Integrals
Exponential Integrals

Formulas

Integral of sin(qx) * e^(-αx) = q / (α^2 + q^2)

Theorems

Fourier transform of exponential and sinusoidal functions
Linearity of integration

Suitable Grade Level

University (Undergraduate level)